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Abstract 

Deliverable D3.3 reports on anomaly and event detection algorithms originating from a 

variety of different research domains, including runtime verification, semantic web, digital 

signal processing, complex event processing, and data stream processing. The focus lies on 

simple events, which can be combined to form more complex event patterns if necessary. To 

make these event detection algorithms useable for domain experts, the deliverable presents 

a predefined set of signal properties that can be identified by event detection algorithms and 

organizes these signal properties into a taxonomy. In practical implementations, this 

approach allows domain experts to specify new event types based on an appropriate signal 

property and define only very few parameters of these signal properties. 
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Executive Summary 
The SENSE project aims to explain events occurring in technical systems from the area of 
Smart Grid and Smart Buildings. The goal is to contribute to Austria’s sustainability goals by 

making complex systems that underlie key (and often highly polluting) infrastructures more 
efficient and user-friendly through explanations of (anomalous) events occurring in those 

systems. The SENSE system to be developed in this project aims to make complex cyber-
physical systems (CPS) more transparent and thereby improve the performance and user 

acceptance of such systems. 
 

This deliverable focuses on simple event types relevant to cover the SENSE use cases as well 
as use cases in similar domains. These simple event types can be expressed in terms of signal 

properties. For example, a threshold violation event may be mapped to an “overshoot” signal 
property with a certain threshold that triggers an event if the threshold exceeded by the 

signal. Defining a new event type can thus be achieved by selecting an appropriate signal 
property and specifying the required parameters (e.g., a value for the threshold of the 

“overshoot” signal property). This approach provides a simple way for domain experts to 

define event types relevant to their use case, without knowledge of the underlying event 
detection method or tool. 

 
Numerous approaches from various research domains, including runtime verification, 

semantic web, digital signal processing, complex event processing, and data stream 
processing exist that can be applied to detect events on data streams. For example, Signal  

Temporal Logic (STL) from the domain of runtime verification allows to express signal 
properties using temporal logic formulas, which then can be supplied to an STL software 

library alongside the data streams to detect the actual events. Unfortunately, STL is not 
expressive enough to define all events relevant for the SENSE use cases. As an alternative 

solution, the concept also supports the implementation of event detection methods, e.g. in 
the form of Python code, that are specific to certain event types. 

 
Selecting an appropriate event detection method or tool for each event type is subject to 

numerous factors, including expressiveness, computational complexity, tool support and 

expert knowledge required for more sophisticated event type definitions than the ones 
covered by the taxonomy. Furthermore, multiple methods may be used to cover the same 
event type, offering optimization potential, which is left open as future work. 
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1 Introduction 
1.1 Purpose and Scope of the Document 
This deliverable summarizes the results of Task 3.3 of the SENSE conceptual components (cf. 

Figure 1). It interlinks with other tasks and work packages as follows: The deliverable covers 
concepts and methods for implementing the simple event detection module defined in the 

Auditable SENSE Architecture [1]. The selected methods cover all event types that have been 
identified in the definition of the use cases and user stories [2]. It thereby builds upon the 
semantic and time-series data basis established during Work Package 2. The resulting 
implementations of these event detection methods will contribute to the technology stack 
implementation as one of the core modules. Furthermore, the detected events form the basis 

on which explanations can be generated in Work Package 4. 
 

 
Figure 1 – SENSE Conceptual Components, Their Connections, and Relevant WPs 

 

This deliverable incorporates many different requirements from all partners involved in the 

SENSE project. An overview of colleagues contributing to this work is summarized in Table 1.  

 

Table 1 Partner’s Involvement 

Project Partner Name (Initial) Role/Tasks 
WU Marta Sabou (MS) Project Coordination 

WU Katrin Schreiberhuber (KS) Explainability 

WU Fajar Ekaputra (FE) Explainability, Auditability 

WU Mevludin Memedi (MM) Use case elicitation 

TU Wien Wolfgang Kastner (WK) Project Coordination 

TU Wien Gernot Steindl (GS) Architecture design 

TU Wien Thomas Frühwirth (TF) Architecture design 

TU Wien Tobias Schwarzinger (TS) Rule-based event detection 

TU Wien Mohammad Bilal (MB) Model-based event detection  
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Siemens Konrad Diwold (KD) Supervisory 

Siemens Alfred Einfalt (AE) Supervisory, Smart Grid use case expert 

Siemens Daniel Hauer (DH) Smart Grid use case expert 

Siemens Juliana Kainz (JK) Smart Grid use case expert 

Siemens Rob Poelmans (RP) Smart Grid use case expert 

Siemens Gerhard Engelbrecht (GE) Smart Grid use case expert 

Siemens Simon Steyskal (SS) Smart Grid use case expert 

AEE INTEC Dagmar Jähnig (DJ) Smart building use case expert 

AEE INTEC Christoph Moser (CM) Smart building use case expert 

MOOSMOAR 
Energies 

Wolfgang Prüggler (WP) Use case elicitation, economic considerations 

Onlim Ioan Toma (IT) Knowledge-driven conversational interface 

Onlim Jürgen Umbrich Knowledge-driven conversational interface 

 

1.2 Structure of the Document 
Section 2 describes the overall methodology applied in this deliverable. Section 3 covers the 

signal property taxonomy and parameters associated with each signal property. Section 4 
then presents an overview of existing event detection methods and tools from various 

research domains. Section 5 exemplifies how the various signal properties can be mapped to 
event detection methods to detect events relevant for the SENSE use cases. Section 6 then 

discusses how we integrate signal properties with existing Semantic Web technology.  Section 
7 summarizes the main findings of this deliverable. 
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2 Methodology 
The behavior of CPSs can often be verified by analyzing their input and output signals. To 
detect faults in the system, signal properties may be defined on the signals, which are then 

monitored by event detection algorithms. For example, systems that employ this technique 
in the domain of smart buildings are called Automatic Fault Detection and Diagnostic systems 

(AFDD). While the motivation in the SENSE system is slightly different, as we are not 
necessarily interested only in faults but in more general events for which an explanation shall 

be generated, techniques that allow monitoring signals for specific signal properties can also 
be applied in this context. 

 
The SENSE system distinguishes between two types of events: simple and complex. Thereby, 

simple events are defined as events that can be identified purely on one or multiple time-
series data streams. Complex events are defined on a higher-level as a combination of at least 

two simple and/or complex events. While there exist tools and concepts that try to cover both 
aspects, the vast amount of work focuses on either one of the two event types. Furthermore, 

events that were determined as relevant during the use case analysis are exclusively signal-

based. We therefore focus on simple event detection in this deliverable, and only provide a 
rough overview on complex event detection techniques as a starting point for future use cases 

that might make use of this technique. 
 

Event definitions for simple events are expressions over the shape of the underlying signals. 
For example, the system should identify an event if a signal exceeds a predefined threshold. 

There exist a lot of different techniques that can be applied to solve this task, each with their 
benefits and drawbacks. However, one commonality they share is that they need to be 

expressed in a method-specific language, with a trade-off between their expressive power 
and usability (in terms of easily understanding how to use them).  

 
For this reason, this deliverable demonstrates a way of mapping these event type definitions 

to a predefined set of signal properties. Event types can then be specified by selecting an 
appropriate signal property and defining a set of parameters, hiding the underlying event 

detection method from the user that interacts with the SENSE system, both during the 

commissioning as well as during the operational phase of the CPS. 
 
The required tasks are as follows: First, we define a taxonomy of signal properties, i.e., basic 
shapes of time-series data streams that may be used for event definitions (Section 3). 

Secondly, we investigate and provide an overview of existing event detection methods and 
tools (Section 4). And lastly, we identify a suitable event detection method for each of the 

signal properties that are relevant to implement SENSE use cases (Section 5). 
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3 Event Type Definitions Based on Signal Properties 
While properties of signals that lead to events in CPSs might be arbitrarily complex, in practice 
the vast number of simple events can be mapped to one specific or a combination of relatively 

simple signal properties. A non-exhaustive list of such properties are threshold violations, 
peaks, dips, trends, and oscillations. It is therefore useful to provide a list or a taxonomy of 

predefined properties for a system engineer to select from.  
 

3.1 Taxonomy of Signal Properties 
In [3], Boufaied et al. provide such a taxonomy of signal properties of CPSs. This taxonomy 
served as a basis for the taxonomy illustrated in Figure 2. Only the leaf elements of the 

taxonomy highlighted in green should be considered properties that can be used to identify 
events, internal (white) nodes only provide structure to the taxonomy. The taxonomy is 

relatively simple but already covers a wide range of practically relevant properties. The 
meanings of the entries under Signal Property are covered in [3]. 

 
We adapted the taxonomy in the following ways. Firstly, we decided to exclude the “Data 

Assertion” type; it is, therefore, greyed out. This is because in [3] “Data Assertion” is defined 
in terms of a Signal First-Order Logic (SFO) (cf. Section 15) expression. However, currently no 

implementation of SFO exists. We generalized this idea by introducing the 
“CustomDefinition”, that can be used to define more specific properties than the ones 

covered by the taxonomy otherwise. Secondly, we added the “OutOfBounds” and “Within 
Bounds” properties. In general terms, an event that is based on an OutOfBounds property will 

be fired if the signal overshoots or undershoots a pre-defined value interval. Likewise, an 
event based on the WithinBounds property will be fired if the signal enters a pre-defined 
value interval. Finally, we applied some renaming and minor modifications regarding the 
definitions and the parameters of some signal properties to better match the terminology of 
SENSE.  

 

Figure 2 – SENSE Signal Properties Taxonomy, Adapted from [3]  
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3.2 Parameter Definitions for Selected Signal Properties 
In general, creating event type definitions requires defining multiple parameters of the 
underlying signal property in the time and value domains. These parameters are also covered 

in [3]. Table 2 summarizes the parameters of signal properties that are relevant for SENSE. 
Note that we adapted the parameter names to better convey their meaning in expense of 

increased length of parameter names. We further added default values in square brackets 
after the parameter name, where appropriate. 

 
Table 2 Parameter Definitions for Signal Properties Relevant for SENSE Use Cases  

Signal 
Property 

Parameter Definitions Notes 

Overshoot 
 

• threshold: an event will be fired if the signal rises above 

the threshold value under the limitations of the 
remaining parameters 

• overshoot_margin [0]: an event will only be fired if the 

signal rises above the threshold by at least the 

margin defined by overshoot_margin 
• overshoot_interval [0]: an event will only be fired if the 

signal rises above the threshold for at least the 
duration specified by overshoot_interval 

for the most basic 
overshoot event, 
which is a simple 

threshold violation, 
overshoot_interval 
and 

overshoot_margin 
are both set to 0 

Undershoot 
 

• threshold: an event will be fired if the signal falls below 

the threshold value under the limitations of the 
remaining parameters 

• undershoot_margin [0]: an event will only be fired if 

the signal falls below the threshold by at least the 
margin defined by undershoot_margin 

• undershoot_interval [0]: an event will only be fired if 

the signal falls below the threshold for at least the 

duration specified by undershoot_interval 

 

OutOfBounds • upper_threshold: an event will be fired if the signal 

rises above the upper_threshold under the 

limitations of the remaining parameters 
• upper_threshold_margin [0]: an event will only be fired 

if the signal rises above the upper_threshold by at 
least the margin defined by upper_threshold_margin 

• upper_threshold_interval [0]: an event will only be 

fired if the signal rises above the upper_threshold for 
at least the duration specified by 
upper_threshold_interval 

• lower_threshold: an event will be fired if the signal falls 

below the lower_threshold under the limitations of 

the remaining parameters 
• lower_threshold_margin [0]: an event will only be fired 

if the signal falls below the lower_threshold by at 
least the margin defined by lower_threshold_margin 

• lower_threshold_interval [0]: an event will only be fired 

if the signal falls below the lower_threshold for at 

least the duration specified by 
lower_threshold_interval 

an OutOfBounds 

event is simply a 
combination of 
Overshoot OR 

Undershoot 

WithinBounds • upper_threshold: an event will be fired if the signal falls 

below the upper_threshold under the limitations of 
the remaining parameters 
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• upper_threshold_margin [0]: an event will only be fired 

if the signal falls below the upper_threshold by at 
least the margin defined by upper_threshold_margin 

• upper_threshold_interval [0]: an event will only be 

fired if the signal falls below upper_threshold – 
upper_threshold_margin for at least the duration 

specified by upper_threshold_interval 
• lower_threshold: an event will be fired if the signal falls 

below the lower_threshold under the limitations of 
the remaining parameters 

• lower_threshold_margin [0]: an event will only be fired 

if the signal rises above the lower_threshold by at 
least the margin defined by lower_threshold_margin 

• lower_threshold_interval [0]: an event will only be fired 

if the signal rises above the lower_threshold + 
lower_threshold_margin for at least the duration 

specified by lower_threshold_interval 

RiseTime 
 

• delta: an event will only be fired if the signal rises by at 

least the value defined by delta under the limitations 
of the remaining parameters 

• rise_time: an event will only be fired if the signal rises 

by delta within the time interval defined by 
rise_time 

 

FallTime • delta: an event will only be fired if the signal falls by at 

least the value defined by delta under the limitations 

of the remaining parameters 
• fall_time: an event will only be fired if the signal falls by 

delta within the time interval defined by fall_time 

 

Custom Definition • implemented_in: this parameter refers to an identifier 

(URI) of a custom implementation of an event 
detection rule 

this event type 
allows to define a 
custom monitor for 

very specific simple 
events that cannot 
easily be expressed 
with events provided 

by the taxonomy 

 

In addition, each of the parameters can either be set to a fixed value (LiteralValue) or be 
determined by another signal (SensorValue). For example, the user might want the system to 

fire an event when the outside temperature exceeds a predefined threshold, e.g., 35°C. 
Therefore, the user defines a new event type based on the Overshoot signal property, sets 

the type of the threshold parameter to LiteralValue, and its value to 35. Alternatively, the user 
might want the system to fire an event whenever the power consumption of a device exceeds 

the operating envelope. Thereby, the operating envelope is defined by a signal that is input 
to the SENSE system via the data ingestion module [1]. Therefore, the user defines a new 

event type based on the Overshoot signal property, sets the type of the threshold parameter 
to SensorValue, and its value to the name of the corresponding sensor. 
 

3.3 Example Event Definitions for SENSE Use Cases 
To underline the suitability of a signal property taxonomy for covering most practically 
occurring event types, Table 3 provides a truncated list of event types that have been 
identified during the definition of SENSE use cases and user stories [2] and their mappings to 
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elements of the signal property taxonomy. All other event types identified during this phase 
fall into the same set of event types as the ones defined in Table 3. 
 

Table 3 Events Relevant for SENSE Use Cases and Their Mapping to Signal Properties  

Event Name Description Underlying Signal 

Property 
DemandEnvelopeViolated the current active power 

consumption is above the 
Operating Envelope (OE) 

Overshoot 

BatterySocLow  the current State of Charge 
(SOC) of a peak-shaving battery 

is below a certain threshold 

Undershoot 

BatteryNotUsed  the battery is neither actively 
charging nor discharging, i.e., 
net power flow, either being 
fed into the battery (charging) 

or extracted from the battery 
(discharging), is minimal and 
remains within a narrow range 

around zero 

WithinBounds 

BatteryApDropped the active power draw of the 
battery drops by a specific value 
within a given time interval, 
indicating that an EV has been 

disconnected 

FallTime 
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4 Event Detection Methods and Tools 
A large variety of event detection methods/formalisms may be applied to monitor the various 
signal properties defined in the taxonomy in the previous section. The methods originate from 

different domains. Some methods are driven by their underlying formalisms and others are 
more pragmatically driven by the need for implementations, often within the context of an 

existing framework for a specific task. In the following, we briefly introduce approaches 
structured by their originating domain, as approaches from the same domain typically share 

the underlying concepts and only differ in expressiveness, capabilities, or efficiency. 
 

4.1 Runtime Verification 
This group employs the most formal underlying theory of the approaches presented in this 
deliverable. It originates from the formal verification of systems, either during system design 

or runtime. The underlying idea is the definition of properties a system has to fulfill based on 
formal logic. Depending on the complexity of the system, it might either be possible to 

formally proof during design that the system operates within the given specification in all 
circumstances or monitor the system during simulation and runtime.  

 
Many of the approaches in this category are variants of temporal logic. Temporal logic is a 

type of modal logic that is used to describe and reason about the behavior of systems over 
time. It allows for the expression of properties related to the order of events and the 

evolution of states in a system. Temporal logic formulas are built using a set of logical 
operators, such as conjunction, disjunction, negation, and temporal operators like 'always', 

'eventually', 'until', and 'next'. These formulas can be used to specify and verify the 
correctness of system properties, such as safety, liveness, and fairness. Table 4 provides 
examples for typical temporal operators supported by most temporal logics. 
 

Table 4 Temporal Operators for Temporal Logics 

Operator Symbol Description Example 
Always 
 

G 
 

asserts that a property holds at all 
future times 

G(p) means that p will always be true 

Eventually 

 

F 

 

asserts that a property holds at 

some future time 

F(p) means that p will eventually be true at 

some point in the future 

Next X asserts that a property holds at the 
next time step 

X(p) means that p will be true in the next 
time step 

Until U asserts that a property holds until 
another property becomes true 

Example: p U q means that p is true until q 
becomes true 

 
The propositional variables, or simply propositions, p and q are statements that can be either 

true or false. As these operators originate from the domain of formal verification, their 
description might sound unintuitive for event specification at a first glance. However, their 

usefulness for this purpose can easily be demonstrated with a simple example: Assume that 
we want to ensure that a signal, e.g., a temperature value T, stays below a certain threshold, 

e.g., 25. We can feed the formula defined in Equation 1 into a tool, alongside an array of all 
temperature readings collected so far. The tool will evaluate the temperature values against 

the formula and provide, as a result, an array stating if the formula holds for (satisfies) each 
entry of the temperature value array. Thus, a change in the result from “valid” to “invalid” is 
equivalent to an Overshoot of the temperature T value with threshold 25. 
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(𝑇 <  25) 

Equation 1 Temporal Logic Formula Example 

 

4.1.1 Linear Temporal Logic (LTL) 

Linear Temporal Logic (LTL) is a formal system used for describing and reasoning about the 

behavior of concurrent and reactive systems over time. It allows for the expression of 
properties related to the evolution of states in a system. As a drawback in the context of 

simple event detection, LTL only supports logical operators and is thus limited to Boolean 
input values. Furthermore, LTL is a discrete-time logic, meaning it deals with systems that 

have a discrete sequence of states over time, but it cannot express timespans, as “holds true 
for at least two seconds”. 

 
• LTL can express: “the Boolean variable p will never be false”  

• LTL cannot express: “the Integer variable T will never be lower than 25”  

• LTL cannot express: “the Boolean variable p will never be false for more than 2 seconds”  

 

4.1.2 Metric Temporal Logic (MTL) 
Metric Temporal Logic (MTL) extends LTL by introducing quantitative timing constraints, 
allowing for the expression of time-bounded properties. MTL formulas include operators that 
specify time intervals, such as “within” and “since”, which enable the descr iption of temporal 
relationships between events with specific time bounds. This makes MTL more suitable for 
applications where precise timing requirements are crucial, such as real-time systems and 

CPSs. Still, MTL can only reason about Boolean propositions. 
 

• MTL can express: “if the Boolean variable p becomes true, q has to also become true 
within 2 seconds” 

• MTL cannot express: “if the Integer variable T rises above 25, it must return to lower 
than 25 within 2 seconds” 

 

4.1.3 Signal Temporal Logic (STL) 

Signal Temporal Logic (STL) is specifically designed for reasoning about continuous-time 
signals and their temporal properties. It includes operators for expressing properties related 

to the behavior of signals over time, such as “eventually”, “always”, “until”, and “since”. 
Additionally, STL supports the use of arithmetic operators and comparison operators, which 

allows for the description of more complex signal properties. However, like the other 
temporal logics discussed so far, STL cannot reference the value of a signal at a time instance 

when a certain property was satisfied. This is often required to compare signals to their 
previous values. 

 

• STL can express: “if the Integer variable T rises above 25, it must return to lower than 
25 within 2 seconds” 

• STL cannot express: “if the Integer variable T rises by 2 within 1 second, it must return 
to its original value within 10 seconds” 
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4.1.4 Signal Temporal Logic* (STL*) 

STL* [4] extends STL with the “freeze” which allows referencing to the value of a signal at a 
time instance when a certain property was satisfied. Otherwise, it is equivalent to STL. STL* 
is very expressive and suitable to define all event types identified to be relevant during the 
SENSE Use Case Definition. Its limitations are minor, for example, STL* cannot reference the 
value of a local extrema, nor can it use quantifiers in temporal logic operators or value 
variables. 
 

• STL* can express: “if the Integer variable T rises by 2 within 1 second, it must return to 

its original value within 10 seconds” 
• STL* cannot express: “if the Integer variable T rises above 25, it must return below its 

lowest value in the last 5 seconds within the next 10 seconds”  
• STL* cannot express: “if the Integer variable T rises above 25, there must exist some 

value r around which T stabilizes within 10 seconds”  
 

4.1.5 Signal First-Order Logic (SFO) 
MTL, STL and STL* do not support the use of existential quantifiers for time and value 
variables, somewhat limiting their capability of expressing very complex signal properties. For 
example, “the bounded stabilization property requires the signal f to stabilize around some 

value of r, which can vary during the execution of the system” [5], which cannot be expressed 
without quantifiers on a value variable. This limitation is addressed with the definition of the 
Signal First-Order Logic (SFO) [5]. However, while SFO is the most expressive formal 
framework for specifying signal properties, there is currently no implementation available.  
 

• SFO can express: “if the Integer variable T rises above 25, there must exist some value r 
around which T stabilizes within 10 seconds” 

 

4.2 Semantic Web 
SPARQL, as the default query language in the Semantic Web, is typically executed against a 
database, whereby the query engine processing the SPARQL query can only provide answers 

based on the information the database contains at a specific point in time. This raises several 
problems, e.g., the query has to be evaluated repetitively causing additional delay, duplicated 

events must be recognized causes additional overhead, and the same data needs to be 
processed multiple times. Therefore, [6] defines RDF streams, i.e., continuous streams of RDF 
encoded data. In the following, several approaches that fall into the category of Semantic 
Web approaches based on SPARQL extensions that operate on RDF streams are discussed. 
 

4.2.1 OntoEvent 
Similar to the logics-based approaches presented in Section 4.1., Ontology for Event 
Description (OntoEvent) [7] defines a language with temporal and logical operators to specify 
events. Furthermore, it provides a semantic model for expressing these event definitions 
directly as an OWL ontology. It supports both simple (in OntoEvent terminology called 
“primitive”) events, as well as complex events, which are composition of primitive events. 
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4.2.2 C-SPARQL 

The authors of [6] consider the use of SPARQL for event detection. Furthermore, they 
introduce Continuous SPARQL (C-SPARQL), which extends SPARQL with stream and timing 
semantics, as well as keywords to construct and describe such continuous queries. 
Shortcomings of C-SPARQL are the lack of support from CEP and inferencing. 
 

4.2.3 EP-SPARQL 

Event Processing SPARQL (EP-SPARQL) [8] supports the definition of event patterns to detect 
specific occurrences or combinations of events in the data stream. Furthermore, it adds 

inferencing capabilities. 
 

4.2.4 INSTANS 
Similar to the previous approaches, the authors of [9] also propose the use of SPARQL for 

event detection. The Incremental eNgine for STANding Sparql (INSTANS) event processing 
platform implements a continuous query execution engine. Furthermore, it optimizes 

execution by identifying query structures that are common among multiple running 
applications and reusing results of such query parts. 
 

4.2.5 CQELS-CEP 

Like INSTANTS, Continuous Query Evaluation over Linked Stream (CQELS) [10] implements 
the idea of continuous execution of queries on semantic/RDF data streams. It achieves this 
by extending the SPARQL grammar and defining data structures and algorithms for efficient 
implementation. The authors of [11] further extended CQELS with Complex Event Processing 
(CEP) capabilities, resulting in CQELS-CEP. 
 

4.2.6 RSEP-QL 

RSEP-QL is another RDF Stream Processing Query Language introduced in [12]. It improves 

upon EP-SPARQL and C-SPARQL and combines Data Stream Management System (DSMS) 
operators like windows as well as complex event processing features.  
 

4.2.7 STARQL 
In [13] Streaming and Temporal ontology Access with a Reasoning-based Query Language 
(STARQL) is introduced. STARQL is the query language for formulating events. However, it is 
part of a larger ecosystem of tools, including ExaStream as a backend for query processing 
and with Ontology-Based Data Access (OBDA) capabilities. Furthermore, OptiqueVQS is a 
graphical tool that supports end-users in the STARQL query formulation process by accessing 
and providing information about the ontology that shall be queried. 

 

4.3 Digital Signal Processing 
Another domain that heavily applies techniques for analyzing signals is Digital Signal 
Processing (DSP). While many operations in this domain deal with signal transformations, 

there exist also concepts that can be utilized for simple event detection, e.g., wavelet analysis, 
machine learning, filtering, anomaly detection, and pattern recognition. In the following, we 

briefly introduce cross-correlation and dynamic time warping as two examples of this domain. 
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4.3.1 Cross-correlation 

Cross-correlation is a statistical measure used in signal processing to determine the similarity 
between two signals as a function of a time-lag applied to one of them. It is a mathematical 
operation that compares two signals by shifting one of them along the time axis and 
computing the correlation between the two signals at each position. An event type may be 
specified by defining the shape of the time series via a “template signal” and firing an event 
if the monitored signal is sufficiently similar, i.e., the cross-correlation value is sufficiently high 
at some point in time. 
 

4.3.2 Dynamic Time Warping 
Dynamic Time Warping (DTW) is an algorithm that finds an optimal alignment between two 
signals by warping (non-linearly stretching or compressing) the time dimension of one signal 
to match the other. It is a non-linear operation that allows for more flexibility in matching 
sequences with different lengths or speeds than cross-correlation. 
 

4.4 Complex Event Processing 
Assuming there exists a method for simple event detection, approaches exist that do not 
analyze the data directly but aim to analyze streams of events for specific patterns. Related 
terms in this context are event pattern matching or pattern matching over event streams. As 
simple event processing is currently powerful enough to cover the SENSE use cases, we only 
provide a brief overview of existing approaches to complex event processing in the following 
we found so far, but no comprehensive list. 
 

4.4.1 Cayuga 

Cayuga is a system that enables users to create subscriptions for multiple events. It has 
advanced features like parameterization and aggregation, which make it more expressive 

than regular pub/sub systems. The subscription language is based on specific operators, 
ensuring clear meanings and allowing for optimization opportunities. Cayuga is based on a 
Nondeterministic Finite State Automata (NFA) model [14], [15]. 
 

4.4.2 SASE+ 
SASE+ is a complex event language that allows for repeating patterns in event streams, known 
as Kleene closure. This language is useful in various applications like finance, inventory 
management, and healthcare monitoring. While Kleene closure is well-studied in regular 
expressions, its use in event streams has unique features. This paper proposes a compact 
language for defining Kleene closure patterns, creates a formal model to describe its 
semantics and expressiveness, and compares it to other languages in the field [16]. 
 

4.4.3 Siddhi 

Siddhi is a complex event processing engine that efficiently processes and analyzes event 
streams in real-time. It is designed to handle high volumes of data and provides a flexible and 
powerful language for defining event patterns and rules. With its stream processing style 
architecture, Siddhi offers improved performance and scalability compared to traditional CEP 
engines. It employs SQL-like programming constructs, similar to Language Integrated Query 
(LINQ), to define queries on event streams, which are continuously evaluated by the Shiddi 
event processing engine [17]. 
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4.4.4 TESLA 
TESLA is a complex event specification language that allows users to define event patterns 
and rules for processing incoming data. It uses simple syntax and formal semantics based on 
first-order, metric temporal logic. TESLA offers high expressiveness and flexibility, providing 
content and temporal filters, negations, timers, aggregates, and customizable policies for 
event selection and consumption. The language is supported by an efficient event detection 
algorithm based on automata, making it suitable for various applications involving real-time 
event processing [18]. 
 

4.4.5 ETALIS 
ETALIS [19] is a rule-based language for CEP with clear syntax and semantics. In this respect, 
it is similar to the logics-based approaches presented in Section 4.1. The paper defines atomic 

events as instantaneous. Complex events are defined as a combination of atomic and possibly 
complex events, whereby complex events are not instantaneous but span over a time interval. 

ETAILS then focuses on defining patterns of complex events, i.e., events may overlap, directly 
follow each other, or an event has to end before another event starts. 

 

4.5 Data Stream Processing 
Finally, there are sophisticated commercial and open-source solutions for transporting, 

monitoring and analyzing large streams of data. These are often proprietary solutions, and 
the corresponding event detection algorithms have to be implemented in a high-level 

programming language rather than focusing on an abstract concept for event definitions. 
Nevertheless, they can be useful in CPSs for data transport and for implementing highly 

customized event detection algorithms. 
 

4.5.1 Apache Kafka 
Apache Kafka1 is an open-source distributed event streaming platform developed by the 
Apache Software Foundation. It is designed to handle real-time data feeds and allows for 
high-throughput, low-latency streaming of data. Producers send data to Kafka topics, which 

are divided into partitions, and consumers read data from these topics. Kafka ensures data 
reliability by replicating data across multiple brokers and allows for parallel processing of data 

through its partitioning and consumer group features. Kafka is often used as a message broker 
or a streaming platform for processing and analyzing large volumes of data in real -time.  

 
As such, in particular with its Kafka Streams API, Kafka allows to efficiently process huge 
amounts of measurements and feed them to the relevant event detection monitors. The 
algorithm that performs event detection is not covered by Kafka but has to be implemented 
on a higher level. 
 

4.5.2 Apache Flink 

Apache Flink allows to define jobs/functions on data streams, which are then processes either 
in a local setup or, for high-volume stream processing, in cluster environments such as 
Kubernetes. It also offers a library for Complex Event Processing to specify patterns of events, 
which are then evaluated continuously on data streams. Apache Flink provides support for 

 
1 https://kafka.apache.org/  

https://kafka.apache.org/


   

19 
Deliverable 3.3 – v2.0 

unbounded (continuous) and bounded (batched) data streams. Apache Flink supports Apache 
Kafka but also other streaming platforms as data sources and sinks.  
 
The functionality of transformations and event detection has to be specified 
programmatically. However, Apache Flink provides numerous pre-defined operators to 
express SQL-like statements on data streams, enriched with operators to combine, group, and 
filter data streams. Furthermore, it can express certain timing characteristics. 
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5 Method Selection 
Section 3.1 provided a taxonomy of signal properties relevant in many CPSs, including the 
parameters that need to be defined for each signal property. Section 4 presented numerous 

methods and tools for detecting events on data streams that match the corresponding signal 
property definitions. Selecting the most suitable method for detecting events of each type is 

subject to numerous factors: 
• Expressiveness: Some of these methods are more capable in terms of expressiveness 

than others, meaning that there exist event types that cannot be detected by certain 
methods, as exemplified while discussing the various temporal logics in Section 4.1. 

• Computational Complexity: Better expressiveness often comes at the cost of higher 
computational complexity. Optimization potentials as leveraged for example by 

INSTANS (cf. Section 4.2.4) further complicate the assessment of the overall efficiency.  

• Tool Support: The maturity of available implementations of each event detection 
method greatly varies from full enterprise-grade software (e.g., Apache Flink, cf. 
Section 4.5.2), over very capable open-source implementations (e.g., STL, cf. Section 
4.1.3) to “specification only” with no publicly available implementation (e.g., SFO, cf. 
Section 4.1.5). 

• Expert Knowledge: As SENSE evolves, we will expand on the simple event detection 

implementations to support more sophisticated simple event types covering an even 
larger set of real-world scenarios. However, for certain use cases it may be necessary 
for the domain expert to define highly specialized events, requiring expert knowledge 
of the underlying event detection method. 

 
As selecting the best event detection method is not objectively possible on a per-signal-
property basis, the SENSE system does not restrict itself to any particular method for event 
detection. In fact, there might be multiple implementations for the same event type using 
alternative methods. This enables the possibility to automatically select the appropriate event 
detection technique based on the above properties. This concept, particularly investigating 
the optimization potential it offers, is considered future work. However, a preliminary analysis 
concluded that STL is a suitable method (considering the above factors) for detecting most 
event types relevant to the currently defined SENSE use [2]. 

 
From the relevant signal properties, only the FallTime property cannot be detected with STL. 

The reason for this shortcoming is that STL is not expressive enough to refer to the past values 
of a signal but only its current value. For example, it cannot express that a signal falls by a 
defined value, relative to its original value as there is no operator to refer to the original (past) 
value. 
 
We have implemented two event detection methods in the SENSE system to demonstrate its 

flexibility. The SENSE system can evaluate STL specifications over sensor measurements using 

RTAMT [20], a library for monitoring STL formulas. Furthermore, we have implemented 

custom Python classes for monitoring signal properties that cannot be expressed in STL, as 

discussed in Section 4. Future work can extend the repertoire of supported event detection 

methods within the SENSE system. 

 Table 5 summarizes the signal properties that need to be detected to implement the SENSE 
use cases, the currently implemented method for detecting such signal properties, and a 
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template formula that needs to be instantiated for each specific event type. Refer to Table 2 
for a definition of the signal properties and their parameters. For example, the Overshoot 
signal property can be detected using STL with the provided formula. The formula states that 
an event is present if the signal goes beyond a certain threshold (potentially including an 
overshoot_margin) for a specified time (overshoot_interval). 

Table 5 Event Detection Rule Templates Relevant for SENSE Use Cases  

Signal Property Method Definition 
Overshoot  STL G[0,overshoot_interval](signal > threshold + overshoot_margin) 

Undershoot STL G[0,undershoot_interval](signal < threshold - 
undershoot_margin) 

WithinBounds  STL G[0,overshoot_interval](signal < threshold + overshoot_margin) 

AND G[0,undershoot_interval](signal > threshold - 
undershoot_margin) 

FallTime CustomMonitor FallTimeMonitor2 

 

Finally, Table 6 provides example instantiations for each of the event detection rules. The 
event types have been specified in Table 3. The instantiated rules are used by the simple event 

detection module to detect events on the data streams. The Demand Envelope Violated event 
is an instantiation of the Overshoot property and monitors the active power of the entire 

garage. As the overshoot_interval and overshoot_margin parameters are zero, the previously 
discussed Overshoot rule template coincides with the simple threshold violation discussed in 

the natural language definition of the event. In addition, the Battery ApDropped event 
showcases how a custom monitor class can be instantiated with the parameters of a signal 
property. 
 

Table 6 Event Detection Rules for Exemplary SENSE Event Types  

EventType Monitored 
Signal  

Signal 
Property 

Parameters Instantiated Rule 

Demand 
Envelope 
Violated 

AP_Garage_ 
Sensor 

Overshoot threshold = 
(SensorValue) 
OE_Garage_Sensor 

G[0,0](AP_Garage_Sensor 
> OE_Garage_Sensor) 
 

Battery 
SocLow  

SOC_Battery_ 
Sensor 

 

Undershoot threshold = 
(LiteralValue) 15 

G[0,0](SOC_Battery_Sensor 
 < 15) 

 

Battery 
NotUsed  

AP_Battery_ 
Sensor 
 

Within 
Bounds 

upper_threshold = 
(LiteralValue) 0.01 
lower_threshold = 
(LiteralValue) -0.01 

G[0,0](SOC_Battery_Sensor 
 < 0.01) && 
G[0,0](SOC_Battery_Sensor 
 < -0.01) 

Battery 

ApDropped 

AP_Battery_ 

Sensor 
 

FallTime delta = (LiteralValue) 

5 
fall_time = 
(LiteralValue) 2 

FallTimeMonitor(AP_Battery_Sensor, 

delta=5, fall_time=2) 

  

 
2 FallTimeMonitor is the name of the custom Python class that implements the detection of FallTime signal 
properties. 
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6 Integrating Signals with the Semantic Web 
While Sections 3 and 4 detail the theoretical foundation of event detection in SENSE, covering 
signal properties and event detection methods, we also devised methods for integrating 

event detection methods with the Semantic Web. One of our primary concerns was to use 
the Semantic Model (see Deliverable 3.1 [1]) to automatically adapt the event specifications 

(e.g. STL formulae) to the system in question. This would allow system operators to formulate 
the event specification once and apply it to all their system instances. Within SENSE, we 

developed two such concepts and tested them in the PoCs from WP 6. The first approach has 
been evaluated for all PoCs, while the second one has been evaluated in a limited setting for 

PoC Seehub.  
 

Integrating the proposed event specifications with the Semantic Model is important. For 
example, in the Seehub PoC, the active power of the entire garage is a virtual sensor. This 

means that the overall active power must be computed from the individual measurements 
within the garage (e.g. EV chargers). However, how many chargers are within a garage is 

unknown while implementing the monitoring service as it depends on the Semantic Model 

(i.e., how many sensors are in there). Without a means of integrating the event specification 
methods with the Semantic Model, tailoring the event specification must be done manually 

for each system. 
  
The first approach [21] uses off-the-shelf Semantic Web technology. Event specifications are 

stored in the Semantic Model. A monitoring service queries the Semantic Model for event 

specifications and evaluates them over the sensor data. To automatically derive these event 

specifications from the available system knowledge, we employ SHACL rules. In this approach, 

an expression for computing the active power is automatically derived from the system 

topology and then stored in the knowledge base so it can be queried by the monitoring 

service. Details can be found in [21] and in the deliverables from WP 5. 

  

While the first approach is effective, it can be time-consuming for engineers to re-run the 

derivation of the event detection formulae, particularly if they are still exploring the correct 

event specification. To address this issue, we have proposed closer integration between 

SPARQL and Signals [22]. In this approach, users can pose event specifications as queries. The 

query language is an extension of SPARQL that supports signals. These queries can 

incorporate knowledge about the system and use run-time data. The query formalism 

supports continuous queries and can therefore be used for monitoring CPS. While we have 

evaluated the applicability of this approach on a simplified version of PoC 1, future work is 

still necessary to fully investigate this approach. Details can be found in [22].  
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7 Summary 
This deliverable presented a method for specifying event types without expert knowledge of 
the underlying event detection algorithm. It defined a taxonomy of signal properties, based 

on which a domain expert can define new event types by selecting an entry of the taxonomy 
and specifying the relevant parameters of the signal property. Furthermore, it covered a large 

variety of event detection methods and tools that can be applied to detect events on data 
streams based on the event type definitions. 

 
As the event detection method responsible for detecting a specific event type is not 

predefined but can instead be determined by the SENSE system either a-priory or even during 
runtime, this opens a wide field for potential optimizations. Furthermore, whether a 

combination of these relatively simple event types should rather be monitored by a simple or 
a complex event detection algorithm adds to this optimization potential and will be 

investigated in future work. 
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List of Abbreviations 
 

Short Description 

AFDD Automated Fault Detection and Diagnostics 
CEP Complex Event Processing 

CPS Cyber-Physical System 

CQELS-CEP Continuous Query Evaluation over Linked Stream 

C-SPARQL Continuous SPARQL 
DSMS Data Stream Management System 

EP-SPARQL Event Processing SPARQL 

INSTANS Incremental eNgine for STANding Sparql 

LINQ Language Integrated Query 

LTL Linear Temporal Logic 
MTL Metric Temporal Logic 

NFA Nondeterministic Finite State Automata 
OBDA Ontology-Based Data Access 

OE Operating Envelope 
RSEP-QL RDF Stream Processing Query Language 

SFO Signal First-Order Logic 
SOC State of Charge 

SPARQL SPARQL Protocol and RDF Query Language 

SQL Structured Query Language 

STARQL 
Streaming and Temporal ontology Access with a Reasoning-
based Query Language 

STL Signal Temporal Logic 

STL* Signal Temporal Logic Star 
UML Unified Modeling Language 
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