

1
Deliverable 3.3 – v2.0

SENSE: Semantic-based Explanation of

Cyber-physical Systems

Deliverable 3.3:
Anomaly and Event Detection Algorithms

Authors : Thomas Frühwirth, Tobias Schwarzinger, Marta Sabou

Dissemination Level : Public/Restricted
Due date of deliverable : 30.06.2024

Actual submission date : Sept. 2024

Work Package : WP3

Type : Report

Version : 2.0

Abstract

Deliverable D3.3 reports on anomaly and event detection algorithms originating from a

variety of different research domains, including runtime verification, semantic web, digital

signal processing, complex event processing, and data stream processing. The focus lies on

simple events, which can be combined to form more complex event patterns if necessary. To

make these event detection algorithms useable for domain experts, the deliverable presents

a predefined set of signal properties that can be identified by event detection algorithms and

organizes these signal properties into a taxonomy. In practical implementations, this

approach allows domain experts to specify new event types based on an appropriate signal

property and define only very few parameters of these signal properties.

The information in this document reflects only the author’s views and neither the FFG nor the Project Team is
liable for any use that may be made of the information contained therein. The information in this document
is provided “as is” without guarantee or warranty of any kind, express or implied, including but not limited to

the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole
risk and liability.

2
Deliverable 3.3 – v2.0

History
Version Date Reason Revised by
1.0 05.09.2024 Final draft

1.1 15.11.2024 Minor language

improvements and additional

clarifications

Tobias
Schwarzinger,

Marta Sabou

2.0 23.06.2025 Add Section "Integrating

Signals with the Semantic

Web"

Tobias
Schwarzinger

Author List
Project Partner Name (Initial) Contact Information

TU Thomas Frühwirth (TF) thomas.fruehwirth@tuwien.ac.at

TU Tobias Schwarzinger (TS) tobias.schwarzinger@tuwien.ac.at

WU Marta Sabou (MS) marta.sabou@wu.ac.at

3
Deliverable 3.3 – v2.0

Executive Summary
The SENSE project aims to explain events occurring in technical systems from the area of
Smart Grid and Smart Buildings. The goal is to contribute to Austria’s sustainability goals by

making complex systems that underlie key (and often highly polluting) infrastructures more
efficient and user-friendly through explanations of (anomalous) events occurring in those

systems. The SENSE system to be developed in this project aims to make complex cyber-
physical systems (CPS) more transparent and thereby improve the performance and user

acceptance of such systems.

This deliverable focuses on simple event types relevant to cover the SENSE use cases as well
as use cases in similar domains. These simple event types can be expressed in terms of signal

properties. For example, a threshold violation event may be mapped to an “overshoot” signal
property with a certain threshold that triggers an event if the threshold exceeded by the

signal. Defining a new event type can thus be achieved by selecting an appropriate signal
property and specifying the required parameters (e.g., a value for the threshold of the

“overshoot” signal property). This approach provides a simple way for domain experts to

define event types relevant to their use case, without knowledge of the underlying event
detection method or tool.

Numerous approaches from various research domains, including runtime verification,

semantic web, digital signal processing, complex event processing, and data stream
processing exist that can be applied to detect events on data streams. For example, Signal

Temporal Logic (STL) from the domain of runtime verification allows to express signal
properties using temporal logic formulas, which then can be supplied to an STL software

library alongside the data streams to detect the actual events. Unfortunately, STL is not
expressive enough to define all events relevant for the SENSE use cases. As an alternative

solution, the concept also supports the implementation of event detection methods, e.g. in
the form of Python code, that are specific to certain event types.

Selecting an appropriate event detection method or tool for each event type is subject to

numerous factors, including expressiveness, computational complexity, tool support and

expert knowledge required for more sophisticated event type definitions than the ones
covered by the taxonomy. Furthermore, multiple methods may be used to cover the same
event type, offering optimization potential, which is left open as future work.

4
Deliverable 3.3 – v2.0

Table of Content
History .. 2
Author List .. 2

Executive Summary.. 3
Table of Content .. 4

List of Figures ... 5
List of Tables... 5

1 Introduction ... 6
1.1 Purpose and Scope of the Document .. 6

1.2 Structure of the Document .. 7
2 Methodology.. 8

3 Event Type Definitions Based on Signal Properties ... 9
3.1 Taxonomy of Signal Properties .. 9

3.2 Parameter Definitions for Selected Signal Properties ... 10
3.3 Example Event Definitions for SENSE Use Cases ... 11

4 Event Detection Methods and Tools ... 13

4.1 Runtime Verification .. 13
4.1.1 Linear Temporal Logic (LTL) ... 14

4.1.2 Metric Temporal Logic (MTL) ... 14
4.1.3 Signal Temporal Logic (STL).. 14

4.1.4 Signal Temporal Logic* (STL*).. 15
4.1.5 Signal First-Order Logic (SFO) .. 15

4.2 Semantic Web .. 15
4.2.1 OntoEvent .. 15

4.2.2 C-SPARQL ... 16
4.2.3 EP-SPARQL.. 16

4.2.4 INSTANS.. 16
4.2.5 CQELS-CEP .. 16

4.2.6 RSEP-QL .. 16
4.2.7 STARQL ... 16

4.3 Digital Signal Processing... 16

4.3.1 Cross-correlation.. 17
4.3.2 Dynamic Time Warping .. 17

4.4 Complex Event Processing ... 17
4.4.1 Cayuga .. 17

4.4.2 SASE+.. 17
4.4.3 Siddhi.. 17

4.4.4 TESLA .. 18
4.4.5 ETALIS ... 18

4.5 Data Stream Processing ... 18
4.5.1 Apache Kafka.. 18

4.5.2 Apache Flink ... 18
5 Method Selection... 20

6 Integrating Signals with the Semantic Web ... 22
7 Summary .. 23

List of Abbreviations .. 24

5
Deliverable 3.3 – v2.0

List of Figures

Figure 1 – SENSE Conceptual Components, Their Connections, and Relevant WPs 6

Figure 2 – SENSE Signal Properties Taxonomy, Adapted from [3] .. 9

List of Tables

Table 1 Partner’s Involvement ... 6

Table 2 Parameter Definitions for Signal Properties Relevant for SENSE Use Cases 10

Table 3 Events Relevant for SENSE Use Cases and Their Mapping to Signal Properties 12

Table 4 Temporal Operators for Temporal Logics ... 13

Table 5 Event Detection Rule Templates Relevant for SENSE Use Cases 21

Table 6 Event Detection Rules for Exemplary SENSE Event Types .. 21

6
Deliverable 3.3 – v2.0

1 Introduction
1.1 Purpose and Scope of the Document
This deliverable summarizes the results of Task 3.3 of the SENSE conceptual components (cf.

Figure 1). It interlinks with other tasks and work packages as follows: The deliverable covers
concepts and methods for implementing the simple event detection module defined in the

Auditable SENSE Architecture [1]. The selected methods cover all event types that have been
identified in the definition of the use cases and user stories [2]. It thereby builds upon the
semantic and time-series data basis established during Work Package 2. The resulting
implementations of these event detection methods will contribute to the technology stack
implementation as one of the core modules. Furthermore, the detected events form the basis

on which explanations can be generated in Work Package 4.

Figure 1 – SENSE Conceptual Components, Their Connections, and Relevant WPs

This deliverable incorporates many different requirements from all partners involved in the

SENSE project. An overview of colleagues contributing to this work is summarized in Table 1.

Table 1 Partner’s Involvement

Project Partner Name (Initial) Role/Tasks
WU Marta Sabou (MS) Project Coordination

WU Katrin Schreiberhuber (KS) Explainability

WU Fajar Ekaputra (FE) Explainability, Auditability

WU Mevludin Memedi (MM) Use case elicitation

TU Wien Wolfgang Kastner (WK) Project Coordination

TU Wien Gernot Steindl (GS) Architecture design

TU Wien Thomas Frühwirth (TF) Architecture design

TU Wien Tobias Schwarzinger (TS) Rule-based event detection

TU Wien Mohammad Bilal (MB) Model-based event detection

7
Deliverable 3.3 – v2.0

Siemens Konrad Diwold (KD) Supervisory

Siemens Alfred Einfalt (AE) Supervisory, Smart Grid use case expert

Siemens Daniel Hauer (DH) Smart Grid use case expert

Siemens Juliana Kainz (JK) Smart Grid use case expert

Siemens Rob Poelmans (RP) Smart Grid use case expert

Siemens Gerhard Engelbrecht (GE) Smart Grid use case expert

Siemens Simon Steyskal (SS) Smart Grid use case expert

AEE INTEC Dagmar Jähnig (DJ) Smart building use case expert

AEE INTEC Christoph Moser (CM) Smart building use case expert

MOOSMOAR
Energies

Wolfgang Prüggler (WP) Use case elicitation, economic considerations

Onlim Ioan Toma (IT) Knowledge-driven conversational interface

Onlim Jürgen Umbrich Knowledge-driven conversational interface

1.2 Structure of the Document
Section 2 describes the overall methodology applied in this deliverable. Section 3 covers the

signal property taxonomy and parameters associated with each signal property. Section 4
then presents an overview of existing event detection methods and tools from various

research domains. Section 5 exemplifies how the various signal properties can be mapped to
event detection methods to detect events relevant for the SENSE use cases. Section 6 then

discusses how we integrate signal properties with existing Semantic Web technology. Section
7 summarizes the main findings of this deliverable.

8
Deliverable 3.3 – v2.0

2 Methodology
The behavior of CPSs can often be verified by analyzing their input and output signals. To
detect faults in the system, signal properties may be defined on the signals, which are then

monitored by event detection algorithms. For example, systems that employ this technique
in the domain of smart buildings are called Automatic Fault Detection and Diagnostic systems

(AFDD). While the motivation in the SENSE system is slightly different, as we are not
necessarily interested only in faults but in more general events for which an explanation shall

be generated, techniques that allow monitoring signals for specific signal properties can also
be applied in this context.

The SENSE system distinguishes between two types of events: simple and complex. Thereby,

simple events are defined as events that can be identified purely on one or multiple time-
series data streams. Complex events are defined on a higher-level as a combination of at least

two simple and/or complex events. While there exist tools and concepts that try to cover both
aspects, the vast amount of work focuses on either one of the two event types. Furthermore,

events that were determined as relevant during the use case analysis are exclusively signal-

based. We therefore focus on simple event detection in this deliverable, and only provide a
rough overview on complex event detection techniques as a starting point for future use cases

that might make use of this technique.

Event definitions for simple events are expressions over the shape of the underlying signals.
For example, the system should identify an event if a signal exceeds a predefined threshold.

There exist a lot of different techniques that can be applied to solve this task, each with their
benefits and drawbacks. However, one commonality they share is that they need to be

expressed in a method-specific language, with a trade-off between their expressive power
and usability (in terms of easily understanding how to use them).

For this reason, this deliverable demonstrates a way of mapping these event type definitions

to a predefined set of signal properties. Event types can then be specified by selecting an
appropriate signal property and defining a set of parameters, hiding the underlying event

detection method from the user that interacts with the SENSE system, both during the

commissioning as well as during the operational phase of the CPS.

The required tasks are as follows: First, we define a taxonomy of signal properties, i.e., basic
shapes of time-series data streams that may be used for event definitions (Section 3).

Secondly, we investigate and provide an overview of existing event detection methods and
tools (Section 4). And lastly, we identify a suitable event detection method for each of the

signal properties that are relevant to implement SENSE use cases (Section 5).

9
Deliverable 3.3 – v2.0

3 Event Type Definitions Based on Signal Properties
While properties of signals that lead to events in CPSs might be arbitrarily complex, in practice
the vast number of simple events can be mapped to one specific or a combination of relatively

simple signal properties. A non-exhaustive list of such properties are threshold violations,
peaks, dips, trends, and oscillations. It is therefore useful to provide a list or a taxonomy of

predefined properties for a system engineer to select from.

3.1 Taxonomy of Signal Properties
In [3], Boufaied et al. provide such a taxonomy of signal properties of CPSs. This taxonomy
served as a basis for the taxonomy illustrated in Figure 2. Only the leaf elements of the

taxonomy highlighted in green should be considered properties that can be used to identify
events, internal (white) nodes only provide structure to the taxonomy. The taxonomy is

relatively simple but already covers a wide range of practically relevant properties. The
meanings of the entries under Signal Property are covered in [3].

We adapted the taxonomy in the following ways. Firstly, we decided to exclude the “Data

Assertion” type; it is, therefore, greyed out. This is because in [3] “Data Assertion” is defined
in terms of a Signal First-Order Logic (SFO) (cf. Section 15) expression. However, currently no

implementation of SFO exists. We generalized this idea by introducing the
“CustomDefinition”, that can be used to define more specific properties than the ones

covered by the taxonomy otherwise. Secondly, we added the “OutOfBounds” and “Within
Bounds” properties. In general terms, an event that is based on an OutOfBounds property will

be fired if the signal overshoots or undershoots a pre-defined value interval. Likewise, an
event based on the WithinBounds property will be fired if the signal enters a pre-defined
value interval. Finally, we applied some renaming and minor modifications regarding the
definitions and the parameters of some signal properties to better match the terminology of
SENSE.

Figure 2 – SENSE Signal Properties Taxonomy, Adapted from [3]

10
Deliverable 3.3 – v2.0

3.2 Parameter Definitions for Selected Signal Properties
In general, creating event type definitions requires defining multiple parameters of the
underlying signal property in the time and value domains. These parameters are also covered

in [3]. Table 2 summarizes the parameters of signal properties that are relevant for SENSE.
Note that we adapted the parameter names to better convey their meaning in expense of

increased length of parameter names. We further added default values in square brackets
after the parameter name, where appropriate.

Table 2 Parameter Definitions for Signal Properties Relevant for SENSE Use Cases

Signal
Property

Parameter Definitions Notes

Overshoot

• threshold: an event will be fired if the signal rises above

the threshold value under the limitations of the
remaining parameters

• overshoot_margin [0]: an event will only be fired if the

signal rises above the threshold by at least the

margin defined by overshoot_margin
• overshoot_interval [0]: an event will only be fired if the

signal rises above the threshold for at least the
duration specified by overshoot_interval

for the most basic
overshoot event,
which is a simple

threshold violation,
overshoot_interval
and

overshoot_margin
are both set to 0

Undershoot

• threshold: an event will be fired if the signal falls below

the threshold value under the limitations of the
remaining parameters

• undershoot_margin [0]: an event will only be fired if

the signal falls below the threshold by at least the
margin defined by undershoot_margin

• undershoot_interval [0]: an event will only be fired if

the signal falls below the threshold for at least the

duration specified by undershoot_interval

OutOfBounds • upper_threshold: an event will be fired if the signal

rises above the upper_threshold under the

limitations of the remaining parameters
• upper_threshold_margin [0]: an event will only be fired

if the signal rises above the upper_threshold by at
least the margin defined by upper_threshold_margin

• upper_threshold_interval [0]: an event will only be

fired if the signal rises above the upper_threshold for
at least the duration specified by
upper_threshold_interval

• lower_threshold: an event will be fired if the signal falls

below the lower_threshold under the limitations of

the remaining parameters
• lower_threshold_margin [0]: an event will only be fired

if the signal falls below the lower_threshold by at
least the margin defined by lower_threshold_margin

• lower_threshold_interval [0]: an event will only be fired

if the signal falls below the lower_threshold for at

least the duration specified by
lower_threshold_interval

an OutOfBounds

event is simply a
combination of
Overshoot OR

Undershoot

WithinBounds • upper_threshold: an event will be fired if the signal falls

below the upper_threshold under the limitations of
the remaining parameters

11
Deliverable 3.3 – v2.0

• upper_threshold_margin [0]: an event will only be fired

if the signal falls below the upper_threshold by at
least the margin defined by upper_threshold_margin

• upper_threshold_interval [0]: an event will only be

fired if the signal falls below upper_threshold –
upper_threshold_margin for at least the duration

specified by upper_threshold_interval
• lower_threshold: an event will be fired if the signal falls

below the lower_threshold under the limitations of
the remaining parameters

• lower_threshold_margin [0]: an event will only be fired

if the signal rises above the lower_threshold by at
least the margin defined by lower_threshold_margin

• lower_threshold_interval [0]: an event will only be fired

if the signal rises above the lower_threshold +
lower_threshold_margin for at least the duration

specified by lower_threshold_interval

RiseTime

• delta: an event will only be fired if the signal rises by at

least the value defined by delta under the limitations
of the remaining parameters

• rise_time: an event will only be fired if the signal rises

by delta within the time interval defined by
rise_time

FallTime • delta: an event will only be fired if the signal falls by at

least the value defined by delta under the limitations

of the remaining parameters
• fall_time: an event will only be fired if the signal falls by

delta within the time interval defined by fall_time

Custom Definition • implemented_in: this parameter refers to an identifier

(URI) of a custom implementation of an event
detection rule

this event type
allows to define a
custom monitor for

very specific simple
events that cannot
easily be expressed
with events provided

by the taxonomy

In addition, each of the parameters can either be set to a fixed value (LiteralValue) or be
determined by another signal (SensorValue). For example, the user might want the system to

fire an event when the outside temperature exceeds a predefined threshold, e.g., 35°C.
Therefore, the user defines a new event type based on the Overshoot signal property, sets

the type of the threshold parameter to LiteralValue, and its value to 35. Alternatively, the user
might want the system to fire an event whenever the power consumption of a device exceeds

the operating envelope. Thereby, the operating envelope is defined by a signal that is input
to the SENSE system via the data ingestion module [1]. Therefore, the user defines a new

event type based on the Overshoot signal property, sets the type of the threshold parameter
to SensorValue, and its value to the name of the corresponding sensor.

3.3 Example Event Definitions for SENSE Use Cases
To underline the suitability of a signal property taxonomy for covering most practically
occurring event types, Table 3 provides a truncated list of event types that have been
identified during the definition of SENSE use cases and user stories [2] and their mappings to

12
Deliverable 3.3 – v2.0

elements of the signal property taxonomy. All other event types identified during this phase
fall into the same set of event types as the ones defined in Table 3.

Table 3 Events Relevant for SENSE Use Cases and Their Mapping to Signal Properties

Event Name Description Underlying Signal

Property
DemandEnvelopeViolated the current active power

consumption is above the
Operating Envelope (OE)

Overshoot

BatterySocLow the current State of Charge
(SOC) of a peak-shaving battery

is below a certain threshold

Undershoot

BatteryNotUsed the battery is neither actively
charging nor discharging, i.e.,
net power flow, either being
fed into the battery (charging)

or extracted from the battery
(discharging), is minimal and
remains within a narrow range

around zero

WithinBounds

BatteryApDropped the active power draw of the
battery drops by a specific value
within a given time interval,
indicating that an EV has been

disconnected

FallTime

13
Deliverable 3.3 – v2.0

4 Event Detection Methods and Tools
A large variety of event detection methods/formalisms may be applied to monitor the various
signal properties defined in the taxonomy in the previous section. The methods originate from

different domains. Some methods are driven by their underlying formalisms and others are
more pragmatically driven by the need for implementations, often within the context of an

existing framework for a specific task. In the following, we briefly introduce approaches
structured by their originating domain, as approaches from the same domain typically share

the underlying concepts and only differ in expressiveness, capabilities, or efficiency.

4.1 Runtime Verification
This group employs the most formal underlying theory of the approaches presented in this
deliverable. It originates from the formal verification of systems, either during system design

or runtime. The underlying idea is the definition of properties a system has to fulfill based on
formal logic. Depending on the complexity of the system, it might either be possible to

formally proof during design that the system operates within the given specification in all
circumstances or monitor the system during simulation and runtime.

Many of the approaches in this category are variants of temporal logic. Temporal logic is a

type of modal logic that is used to describe and reason about the behavior of systems over
time. It allows for the expression of properties related to the order of events and the

evolution of states in a system. Temporal logic formulas are built using a set of logical
operators, such as conjunction, disjunction, negation, and temporal operators like 'always',

'eventually', 'until', and 'next'. These formulas can be used to specify and verify the
correctness of system properties, such as safety, liveness, and fairness. Table 4 provides
examples for typical temporal operators supported by most temporal logics.

Table 4 Temporal Operators for Temporal Logics

Operator Symbol Description Example
Always

G

asserts that a property holds at all
future times

G(p) means that p will always be true

Eventually

F

asserts that a property holds at

some future time

F(p) means that p will eventually be true at

some point in the future

Next X asserts that a property holds at the
next time step

X(p) means that p will be true in the next
time step

Until U asserts that a property holds until
another property becomes true

Example: p U q means that p is true until q
becomes true

The propositional variables, or simply propositions, p and q are statements that can be either

true or false. As these operators originate from the domain of formal verification, their
description might sound unintuitive for event specification at a first glance. However, their

usefulness for this purpose can easily be demonstrated with a simple example: Assume that
we want to ensure that a signal, e.g., a temperature value T, stays below a certain threshold,

e.g., 25. We can feed the formula defined in Equation 1 into a tool, alongside an array of all
temperature readings collected so far. The tool will evaluate the temperature values against

the formula and provide, as a result, an array stating if the formula holds for (satisfies) each
entry of the temperature value array. Thus, a change in the result from “valid” to “invalid” is
equivalent to an Overshoot of the temperature T value with threshold 25.

14
Deliverable 3.3 – v2.0

(𝑇 < 25)

Equation 1 Temporal Logic Formula Example

4.1.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is a formal system used for describing and reasoning about the

behavior of concurrent and reactive systems over time. It allows for the expression of
properties related to the evolution of states in a system. As a drawback in the context of

simple event detection, LTL only supports logical operators and is thus limited to Boolean
input values. Furthermore, LTL is a discrete-time logic, meaning it deals with systems that

have a discrete sequence of states over time, but it cannot express timespans, as “holds true
for at least two seconds”.

• LTL can express: “the Boolean variable p will never be false”

• LTL cannot express: “the Integer variable T will never be lower than 25”

• LTL cannot express: “the Boolean variable p will never be false for more than 2 seconds”

4.1.2 Metric Temporal Logic (MTL)
Metric Temporal Logic (MTL) extends LTL by introducing quantitative timing constraints,
allowing for the expression of time-bounded properties. MTL formulas include operators that
specify time intervals, such as “within” and “since”, which enable the descr iption of temporal
relationships between events with specific time bounds. This makes MTL more suitable for
applications where precise timing requirements are crucial, such as real-time systems and

CPSs. Still, MTL can only reason about Boolean propositions.

• MTL can express: “if the Boolean variable p becomes true, q has to also become true
within 2 seconds”

• MTL cannot express: “if the Integer variable T rises above 25, it must return to lower
than 25 within 2 seconds”

4.1.3 Signal Temporal Logic (STL)

Signal Temporal Logic (STL) is specifically designed for reasoning about continuous-time
signals and their temporal properties. It includes operators for expressing properties related

to the behavior of signals over time, such as “eventually”, “always”, “until”, and “since”.
Additionally, STL supports the use of arithmetic operators and comparison operators, which

allows for the description of more complex signal properties. However, like the other
temporal logics discussed so far, STL cannot reference the value of a signal at a time instance

when a certain property was satisfied. This is often required to compare signals to their
previous values.

• STL can express: “if the Integer variable T rises above 25, it must return to lower than
25 within 2 seconds”

• STL cannot express: “if the Integer variable T rises by 2 within 1 second, it must return
to its original value within 10 seconds”

15
Deliverable 3.3 – v2.0

4.1.4 Signal Temporal Logic* (STL*)

STL* [4] extends STL with the “freeze” which allows referencing to the value of a signal at a
time instance when a certain property was satisfied. Otherwise, it is equivalent to STL. STL*
is very expressive and suitable to define all event types identified to be relevant during the
SENSE Use Case Definition. Its limitations are minor, for example, STL* cannot reference the
value of a local extrema, nor can it use quantifiers in temporal logic operators or value
variables.

• STL* can express: “if the Integer variable T rises by 2 within 1 second, it must return to

its original value within 10 seconds”
• STL* cannot express: “if the Integer variable T rises above 25, it must return below its

lowest value in the last 5 seconds within the next 10 seconds”
• STL* cannot express: “if the Integer variable T rises above 25, there must exist some

value r around which T stabilizes within 10 seconds”

4.1.5 Signal First-Order Logic (SFO)
MTL, STL and STL* do not support the use of existential quantifiers for time and value
variables, somewhat limiting their capability of expressing very complex signal properties. For
example, “the bounded stabilization property requires the signal f to stabilize around some

value of r, which can vary during the execution of the system” [5], which cannot be expressed
without quantifiers on a value variable. This limitation is addressed with the definition of the
Signal First-Order Logic (SFO) [5]. However, while SFO is the most expressive formal
framework for specifying signal properties, there is currently no implementation available.

• SFO can express: “if the Integer variable T rises above 25, there must exist some value r
around which T stabilizes within 10 seconds”

4.2 Semantic Web
SPARQL, as the default query language in the Semantic Web, is typically executed against a
database, whereby the query engine processing the SPARQL query can only provide answers

based on the information the database contains at a specific point in time. This raises several
problems, e.g., the query has to be evaluated repetitively causing additional delay, duplicated

events must be recognized causes additional overhead, and the same data needs to be
processed multiple times. Therefore, [6] defines RDF streams, i.e., continuous streams of RDF
encoded data. In the following, several approaches that fall into the category of Semantic
Web approaches based on SPARQL extensions that operate on RDF streams are discussed.

4.2.1 OntoEvent
Similar to the logics-based approaches presented in Section 4.1., Ontology for Event
Description (OntoEvent) [7] defines a language with temporal and logical operators to specify
events. Furthermore, it provides a semantic model for expressing these event definitions
directly as an OWL ontology. It supports both simple (in OntoEvent terminology called
“primitive”) events, as well as complex events, which are composition of primitive events.

16
Deliverable 3.3 – v2.0

4.2.2 C-SPARQL

The authors of [6] consider the use of SPARQL for event detection. Furthermore, they
introduce Continuous SPARQL (C-SPARQL), which extends SPARQL with stream and timing
semantics, as well as keywords to construct and describe such continuous queries.
Shortcomings of C-SPARQL are the lack of support from CEP and inferencing.

4.2.3 EP-SPARQL

Event Processing SPARQL (EP-SPARQL) [8] supports the definition of event patterns to detect
specific occurrences or combinations of events in the data stream. Furthermore, it adds

inferencing capabilities.

4.2.4 INSTANS
Similar to the previous approaches, the authors of [9] also propose the use of SPARQL for

event detection. The Incremental eNgine for STANding Sparql (INSTANS) event processing
platform implements a continuous query execution engine. Furthermore, it optimizes

execution by identifying query structures that are common among multiple running
applications and reusing results of such query parts.

4.2.5 CQELS-CEP

Like INSTANTS, Continuous Query Evaluation over Linked Stream (CQELS) [10] implements
the idea of continuous execution of queries on semantic/RDF data streams. It achieves this
by extending the SPARQL grammar and defining data structures and algorithms for efficient
implementation. The authors of [11] further extended CQELS with Complex Event Processing
(CEP) capabilities, resulting in CQELS-CEP.

4.2.6 RSEP-QL

RSEP-QL is another RDF Stream Processing Query Language introduced in [12]. It improves

upon EP-SPARQL and C-SPARQL and combines Data Stream Management System (DSMS)
operators like windows as well as complex event processing features.

4.2.7 STARQL
In [13] Streaming and Temporal ontology Access with a Reasoning-based Query Language
(STARQL) is introduced. STARQL is the query language for formulating events. However, it is
part of a larger ecosystem of tools, including ExaStream as a backend for query processing
and with Ontology-Based Data Access (OBDA) capabilities. Furthermore, OptiqueVQS is a
graphical tool that supports end-users in the STARQL query formulation process by accessing
and providing information about the ontology that shall be queried.

4.3 Digital Signal Processing
Another domain that heavily applies techniques for analyzing signals is Digital Signal
Processing (DSP). While many operations in this domain deal with signal transformations,

there exist also concepts that can be utilized for simple event detection, e.g., wavelet analysis,
machine learning, filtering, anomaly detection, and pattern recognition. In the following, we

briefly introduce cross-correlation and dynamic time warping as two examples of this domain.

17
Deliverable 3.3 – v2.0

4.3.1 Cross-correlation

Cross-correlation is a statistical measure used in signal processing to determine the similarity
between two signals as a function of a time-lag applied to one of them. It is a mathematical
operation that compares two signals by shifting one of them along the time axis and
computing the correlation between the two signals at each position. An event type may be
specified by defining the shape of the time series via a “template signal” and firing an event
if the monitored signal is sufficiently similar, i.e., the cross-correlation value is sufficiently high
at some point in time.

4.3.2 Dynamic Time Warping
Dynamic Time Warping (DTW) is an algorithm that finds an optimal alignment between two
signals by warping (non-linearly stretching or compressing) the time dimension of one signal
to match the other. It is a non-linear operation that allows for more flexibility in matching
sequences with different lengths or speeds than cross-correlation.

4.4 Complex Event Processing
Assuming there exists a method for simple event detection, approaches exist that do not
analyze the data directly but aim to analyze streams of events for specific patterns. Related
terms in this context are event pattern matching or pattern matching over event streams. As
simple event processing is currently powerful enough to cover the SENSE use cases, we only
provide a brief overview of existing approaches to complex event processing in the following
we found so far, but no comprehensive list.

4.4.1 Cayuga

Cayuga is a system that enables users to create subscriptions for multiple events. It has
advanced features like parameterization and aggregation, which make it more expressive

than regular pub/sub systems. The subscription language is based on specific operators,
ensuring clear meanings and allowing for optimization opportunities. Cayuga is based on a
Nondeterministic Finite State Automata (NFA) model [14], [15].

4.4.2 SASE+
SASE+ is a complex event language that allows for repeating patterns in event streams, known
as Kleene closure. This language is useful in various applications like finance, inventory
management, and healthcare monitoring. While Kleene closure is well-studied in regular
expressions, its use in event streams has unique features. This paper proposes a compact
language for defining Kleene closure patterns, creates a formal model to describe its
semantics and expressiveness, and compares it to other languages in the field [16].

4.4.3 Siddhi

Siddhi is a complex event processing engine that efficiently processes and analyzes event
streams in real-time. It is designed to handle high volumes of data and provides a flexible and
powerful language for defining event patterns and rules. With its stream processing style
architecture, Siddhi offers improved performance and scalability compared to traditional CEP
engines. It employs SQL-like programming constructs, similar to Language Integrated Query
(LINQ), to define queries on event streams, which are continuously evaluated by the Shiddi
event processing engine [17].

18
Deliverable 3.3 – v2.0

4.4.4 TESLA
TESLA is a complex event specification language that allows users to define event patterns
and rules for processing incoming data. It uses simple syntax and formal semantics based on
first-order, metric temporal logic. TESLA offers high expressiveness and flexibility, providing
content and temporal filters, negations, timers, aggregates, and customizable policies for
event selection and consumption. The language is supported by an efficient event detection
algorithm based on automata, making it suitable for various applications involving real-time
event processing [18].

4.4.5 ETALIS
ETALIS [19] is a rule-based language for CEP with clear syntax and semantics. In this respect,
it is similar to the logics-based approaches presented in Section 4.1. The paper defines atomic

events as instantaneous. Complex events are defined as a combination of atomic and possibly
complex events, whereby complex events are not instantaneous but span over a time interval.

ETAILS then focuses on defining patterns of complex events, i.e., events may overlap, directly
follow each other, or an event has to end before another event starts.

4.5 Data Stream Processing
Finally, there are sophisticated commercial and open-source solutions for transporting,

monitoring and analyzing large streams of data. These are often proprietary solutions, and
the corresponding event detection algorithms have to be implemented in a high-level

programming language rather than focusing on an abstract concept for event definitions.
Nevertheless, they can be useful in CPSs for data transport and for implementing highly

customized event detection algorithms.

4.5.1 Apache Kafka
Apache Kafka1 is an open-source distributed event streaming platform developed by the
Apache Software Foundation. It is designed to handle real-time data feeds and allows for
high-throughput, low-latency streaming of data. Producers send data to Kafka topics, which

are divided into partitions, and consumers read data from these topics. Kafka ensures data
reliability by replicating data across multiple brokers and allows for parallel processing of data

through its partitioning and consumer group features. Kafka is often used as a message broker
or a streaming platform for processing and analyzing large volumes of data in real -time.

As such, in particular with its Kafka Streams API, Kafka allows to efficiently process huge
amounts of measurements and feed them to the relevant event detection monitors. The
algorithm that performs event detection is not covered by Kafka but has to be implemented
on a higher level.

4.5.2 Apache Flink

Apache Flink allows to define jobs/functions on data streams, which are then processes either
in a local setup or, for high-volume stream processing, in cluster environments such as
Kubernetes. It also offers a library for Complex Event Processing to specify patterns of events,
which are then evaluated continuously on data streams. Apache Flink provides support for

1 https://kafka.apache.org/

https://kafka.apache.org/

19
Deliverable 3.3 – v2.0

unbounded (continuous) and bounded (batched) data streams. Apache Flink supports Apache
Kafka but also other streaming platforms as data sources and sinks.

The functionality of transformations and event detection has to be specified
programmatically. However, Apache Flink provides numerous pre-defined operators to
express SQL-like statements on data streams, enriched with operators to combine, group, and
filter data streams. Furthermore, it can express certain timing characteristics.

20
Deliverable 3.3 – v2.0

5 Method Selection
Section 3.1 provided a taxonomy of signal properties relevant in many CPSs, including the
parameters that need to be defined for each signal property. Section 4 presented numerous

methods and tools for detecting events on data streams that match the corresponding signal
property definitions. Selecting the most suitable method for detecting events of each type is

subject to numerous factors:
• Expressiveness: Some of these methods are more capable in terms of expressiveness

than others, meaning that there exist event types that cannot be detected by certain
methods, as exemplified while discussing the various temporal logics in Section 4.1.

• Computational Complexity: Better expressiveness often comes at the cost of higher
computational complexity. Optimization potentials as leveraged for example by

INSTANS (cf. Section 4.2.4) further complicate the assessment of the overall efficiency.

• Tool Support: The maturity of available implementations of each event detection
method greatly varies from full enterprise-grade software (e.g., Apache Flink, cf.
Section 4.5.2), over very capable open-source implementations (e.g., STL, cf. Section
4.1.3) to “specification only” with no publicly available implementation (e.g., SFO, cf.
Section 4.1.5).

• Expert Knowledge: As SENSE evolves, we will expand on the simple event detection

implementations to support more sophisticated simple event types covering an even
larger set of real-world scenarios. However, for certain use cases it may be necessary
for the domain expert to define highly specialized events, requiring expert knowledge
of the underlying event detection method.

As selecting the best event detection method is not objectively possible on a per-signal-
property basis, the SENSE system does not restrict itself to any particular method for event
detection. In fact, there might be multiple implementations for the same event type using
alternative methods. This enables the possibility to automatically select the appropriate event
detection technique based on the above properties. This concept, particularly investigating
the optimization potential it offers, is considered future work. However, a preliminary analysis
concluded that STL is a suitable method (considering the above factors) for detecting most
event types relevant to the currently defined SENSE use [2].

From the relevant signal properties, only the FallTime property cannot be detected with STL.

The reason for this shortcoming is that STL is not expressive enough to refer to the past values
of a signal but only its current value. For example, it cannot express that a signal falls by a
defined value, relative to its original value as there is no operator to refer to the original (past)
value.

We have implemented two event detection methods in the SENSE system to demonstrate its

flexibility. The SENSE system can evaluate STL specifications over sensor measurements using

RTAMT [20], a library for monitoring STL formulas. Furthermore, we have implemented

custom Python classes for monitoring signal properties that cannot be expressed in STL, as

discussed in Section 4. Future work can extend the repertoire of supported event detection

methods within the SENSE system.

 Table 5 summarizes the signal properties that need to be detected to implement the SENSE
use cases, the currently implemented method for detecting such signal properties, and a

21
Deliverable 3.3 – v2.0

template formula that needs to be instantiated for each specific event type. Refer to Table 2
for a definition of the signal properties and their parameters. For example, the Overshoot
signal property can be detected using STL with the provided formula. The formula states that
an event is present if the signal goes beyond a certain threshold (potentially including an
overshoot_margin) for a specified time (overshoot_interval).

Table 5 Event Detection Rule Templates Relevant for SENSE Use Cases

Signal Property Method Definition
Overshoot STL G[0,overshoot_interval](signal > threshold + overshoot_margin)

Undershoot STL G[0,undershoot_interval](signal < threshold -
undershoot_margin)

WithinBounds STL G[0,overshoot_interval](signal < threshold + overshoot_margin)

AND G[0,undershoot_interval](signal > threshold -
undershoot_margin)

FallTime CustomMonitor FallTimeMonitor2

Finally, Table 6 provides example instantiations for each of the event detection rules. The
event types have been specified in Table 3. The instantiated rules are used by the simple event

detection module to detect events on the data streams. The Demand Envelope Violated event
is an instantiation of the Overshoot property and monitors the active power of the entire

garage. As the overshoot_interval and overshoot_margin parameters are zero, the previously
discussed Overshoot rule template coincides with the simple threshold violation discussed in

the natural language definition of the event. In addition, the Battery ApDropped event
showcases how a custom monitor class can be instantiated with the parameters of a signal
property.

Table 6 Event Detection Rules for Exemplary SENSE Event Types

EventType Monitored
Signal

Signal
Property

Parameters Instantiated Rule

Demand
Envelope
Violated

AP_Garage_
Sensor

Overshoot threshold =
(SensorValue)
OE_Garage_Sensor

G[0,0](AP_Garage_Sensor
> OE_Garage_Sensor)

Battery
SocLow

SOC_Battery_
Sensor

Undershoot threshold =
(LiteralValue) 15

G[0,0](SOC_Battery_Sensor
 < 15)

Battery
NotUsed

AP_Battery_
Sensor

Within
Bounds

upper_threshold =
(LiteralValue) 0.01
lower_threshold =
(LiteralValue) -0.01

G[0,0](SOC_Battery_Sensor
 < 0.01) &&
G[0,0](SOC_Battery_Sensor
 < -0.01)

Battery

ApDropped

AP_Battery_

Sensor

FallTime delta = (LiteralValue)

5
fall_time =
(LiteralValue) 2

FallTimeMonitor(AP_Battery_Sensor,

delta=5, fall_time=2)

2 FallTimeMonitor is the name of the custom Python class that implements the detection of FallTime signal
properties.

22
Deliverable 3.3 – v2.0

6 Integrating Signals with the Semantic Web
While Sections 3 and 4 detail the theoretical foundation of event detection in SENSE, covering
signal properties and event detection methods, we also devised methods for integrating

event detection methods with the Semantic Web. One of our primary concerns was to use
the Semantic Model (see Deliverable 3.1 [1]) to automatically adapt the event specifications

(e.g. STL formulae) to the system in question. This would allow system operators to formulate
the event specification once and apply it to all their system instances. Within SENSE, we

developed two such concepts and tested them in the PoCs from WP 6. The first approach has
been evaluated for all PoCs, while the second one has been evaluated in a limited setting for

PoC Seehub.

Integrating the proposed event specifications with the Semantic Model is important. For
example, in the Seehub PoC, the active power of the entire garage is a virtual sensor. This

means that the overall active power must be computed from the individual measurements
within the garage (e.g. EV chargers). However, how many chargers are within a garage is

unknown while implementing the monitoring service as it depends on the Semantic Model

(i.e., how many sensors are in there). Without a means of integrating the event specification
methods with the Semantic Model, tailoring the event specification must be done manually

for each system.

The first approach [21] uses off-the-shelf Semantic Web technology. Event specifications are

stored in the Semantic Model. A monitoring service queries the Semantic Model for event

specifications and evaluates them over the sensor data. To automatically derive these event

specifications from the available system knowledge, we employ SHACL rules. In this approach,

an expression for computing the active power is automatically derived from the system

topology and then stored in the knowledge base so it can be queried by the monitoring

service. Details can be found in [21] and in the deliverables from WP 5.

While the first approach is effective, it can be time-consuming for engineers to re-run the

derivation of the event detection formulae, particularly if they are still exploring the correct

event specification. To address this issue, we have proposed closer integration between

SPARQL and Signals [22]. In this approach, users can pose event specifications as queries. The

query language is an extension of SPARQL that supports signals. These queries can

incorporate knowledge about the system and use run-time data. The query formalism

supports continuous queries and can therefore be used for monitoring CPS. While we have

evaluated the applicability of this approach on a simplified version of PoC 1, future work is

still necessary to fully investigate this approach. Details can be found in [22].

23
Deliverable 3.3 – v2.0

7 Summary
This deliverable presented a method for specifying event types without expert knowledge of
the underlying event detection algorithm. It defined a taxonomy of signal properties, based

on which a domain expert can define new event types by selecting an entry of the taxonomy
and specifying the relevant parameters of the signal property. Furthermore, it covered a large

variety of event detection methods and tools that can be applied to detect events on data
streams based on the event type definitions.

As the event detection method responsible for detecting a specific event type is not

predefined but can instead be determined by the SENSE system either a-priory or even during
runtime, this opens a wide field for potential optimizations. Furthermore, whether a

combination of these relatively simple event types should rather be monitored by a simple or
a complex event detection algorithm adds to this optimization potential and will be

investigated in future work.

24
Deliverable 3.3 – v2.0

List of Abbreviations

Short Description

AFDD Automated Fault Detection and Diagnostics
CEP Complex Event Processing

CPS Cyber-Physical System

CQELS-CEP Continuous Query Evaluation over Linked Stream

C-SPARQL Continuous SPARQL
DSMS Data Stream Management System

EP-SPARQL Event Processing SPARQL

INSTANS Incremental eNgine for STANding Sparql

LINQ Language Integrated Query

LTL Linear Temporal Logic
MTL Metric Temporal Logic

NFA Nondeterministic Finite State Automata
OBDA Ontology-Based Data Access

OE Operating Envelope
RSEP-QL RDF Stream Processing Query Language

SFO Signal First-Order Logic
SOC State of Charge

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

STARQL
Streaming and Temporal ontology Access with a Reasoning-
based Query Language

STL Signal Temporal Logic

STL* Signal Temporal Logic Star
UML Unified Modeling Language

25
Deliverable 3.3 – v2.0

References

[1] T. Frühwirth, G. Steindl, T. Schwarzinger and F. Ekaputra, "SENSE Deliverable 3.1
Auditable SENSE Architecture," 2024.

[2] D. Jähnig, C. Moser, T. Frühwirth, K. Schreiberhuber, J. Kainz, D. Hauer, K. Diwold and
M. Sabou, "SENSE Deliverable 2.1: Definition of Use Cases and User Stories," 2023.

[3] C. Boufaied, M. Jukss, D. Bianculli, L. C. Briand and Y. I. Parache, "Signal-based properties
of cyber-physical systems: Taxonomy and logic-based characterization," Journal of
Systems and Software, p. 38, 2021.

[4] L. Brim, P. Dluhoš, D. Šafránek and T. Vejpustek, "STL*: Extending signal temporal logic

with signal-value freezing operator," Information and Computation, pp. 52-67, 2014.

[5] A. Bakhirkin, T. Ferrère, T. Henzinger and D. Nickovic, "The first-order logic of signals,"

in International Conference on Embedded Software (EMSOFT), 2018.

[6] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Grossniklaus, "C-SPARQL: SPARQL

for Continuous Querying," in Proceedings of the 18th international conference on World
wide web, 2009.

[7] M. Ma, L. Liu, Y. Lin, D. Pan and P. Wang, "Event Description and Detection in Cyber-

Physical Systems: An Ontology-Based Language and Approach," in IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS) , 2017.

[8] D. Anicic, P. Fodor, S. Rudolph and N. Stojanovic, "EP-SPARQL: a unified language for
event processing and stream reasoning," in Proceedings of the 20th international

conference on World wide web, 2011.

[9] M. Rinne, S. Törmä and E. Nuutila, "Data, SPARQL-Based Applications for RDF-Encoded

Sensor," SSN 904, pp. 81-96, 2012.

[10] D. Le Phuoc, M. Dao-Tran, A. Le Tuan, M. N. Duc and M. Hauswirth, "RDF stream
processing with CQELS framework for real-time analysis," in Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems, 2015.

[11] M. Dao-Tran and D. Le Phuoc, "Towards Enriching CQELS with Complex Event Processing
and Path Navigation," in HiDeSt@ KI, 2015.

[12] D. Dell’Aglio, M. Dao-Tran, J. P. Calbimonte, D. Le Phuoc and E. Della Valle, "A query
model to capture event pattern matching in RDF stream processing query languages,"
in European Knowledge Acquisition Workshop, 2016.

[13] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, Ö. Özçep, M. Roshchin and A. Waaler,
"Semantic access to streaming and static data at Siemens," Journal of Web Semantics,
44, pp. 54-74, 2017.

[14] A. Demers, J. Gehrke, M. Hong, M. Riedewald and W. M. White, "Towards expressive
publish/subscribe systems," in Advances in Database Technology-EDBT 2006: 10th
International Conference on Extending Database Technology, Munich, Germany, 2006.

[15] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma and W. M. White, "Cayuga:
A General Purpose Event Monitoring System," Cidr, pp. 412-422, 2007.

[16] Y. Diao, N. Immerman and D. Gyllstrom, "Sase+: An agile language for kleene closure
over event streams," UMass Technical Report, 2007.

26
Deliverable 3.3 – v2.0

[17] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga, S. Perera and V.
Nanayakkara, "Siddhi: A second look at complex event processing architectures," in
Proceedings of the 2011 ACM workshop on Gateway computing environments, 2011.

[18] G. Cugola and A. Margara, "TESLA: a formally defined event specification language," in
Proceedings of the Fourth ACM International Conference on Distributed Event-Based
Systems, 2010.

[19] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic and R. Studer, "A rule-based
language for complex event processing and reasoning," in Web Reasoning and Rule
Systems: Fourth International Conference, Bressanone/Brixen, Italy, 2010.

[20] D. Ničković and T. Yamaguchi, "RTAMT: Online Robustness Monitors from STL," in

Automated Technology for Verification and Analysis, 2020.

[21] T. Schwarzinger, G. Steindl, T. Frühwirth and K. Diwold, "Semi-Automated Event

Specification for Knowledge-Based Event Detection," IEEE 29th International
Conference on Emerging Technologies and Factory Automation, 2024.

[22] T. Schwarzinger, G. Steindl, T. Frühwirth, T. Preindl, K. Diwold, K. Ehrenmüller and F. J.
Ekaputra, "Signals as a First-Class Citizen When Querying Knowledge Graphs," arXiv
preprint, no. arXiv:2506.03826., 2025.

