

1
Deliverable 5.1 – v1.0

SENSE: Semantic-based Explanation of

Cyber-physical Systems

Deliverable 5.1:
Technology Stack Implementation

Authors : Thomas Frühwirth, Katrin Schreiberhuber, Mohammad
Bilal, Tobias Schwarzinger, Konrad Diwold, Fajar Ekaputra

Dissemination Level : Public

Due date of deliverable : 30.09.2024

Actual submission date : March 2025

Work Package : WP3

Type : Report

Version : 1.0

Abstract

Deliverable D5.1 reports on the implementation of the SENSE technology stack and its

integration with the ONLIM chatbot platform. It provides brief descriptions and web links to

the GitHub repository of the stack, a template repository for creating new use cases, and a

demo use case repository. Furthermore, the deliverable provides a user guideline on

configuring the stack for a new use case and describes the interface and the steps necessary

for integrating the ONLIM chatbot platform.

The information in this document reflects only the author’s views and neither the FFG nor the Project Team is
liable for any use that may be made of the information contained therein. The information in this document
is provided “as is” without guarantee or warranty of any kind, express or implied, including but not limited to
the fitness of the information for a particular purpose. The user thereof uses the information at his/ her sole
risk and liability.

2
Deliverable 5.1 – v1.0

History
Version Date Reason Revised by
1.0 28.01.2025 Final draft MB

Author List
Project Partner Name (Initial) Contact Information

TU Thomas Frühwirth (TF) thomas.fruehwirth@tuwien.ac.at
WU Katrin Schreiberhuber (KS) katrin.schreiberhuber@wu.ac.at

TU Mohammad Bilal (MB) mohammad.bilal@tuwien.ac.at

TU Tobias Schwarzinger (TS) tobias.schwarzinger@tuwien.ac.at

WU Fajar J. Ekaputra (FJE) fajar.ekaputra@wu.ac.at

3
Deliverable 5.1 – v1.0

Executive Summary
The SENSE project aims to explain events occurring in technical systems from the area of
Smart Grid and Smart Buildings. The goal is to contribute to Austria’s sustainability goals by
making complex systems that underlie key (and often highly polluting) infrastructures more
efficient and user-friendly through explanations of (anomalous) events occurring in those
systems. The SENSE system to be developed in this project aims to make complex Cyber-
Physical Systems (CPSs) more transparent and thereby improve the performance and user
acceptance of such systems.

This deliverable covers the technology stack implementation and focuses on

• the structure, interconnections, and links of the various GitHub repositories that make
up or contribute to the technology stack

• the SENSE User Guideline that guides users through the process of applying SENSE to
an existing CPS, a process we call instantiation, the result of which is a SENSE instance

The SENSE Core repository1 constitutes the main contribution of this deliverable, including
implementations of all SENSE modules defined in Deliverable 3.1 [1]. Furthermore, the SENSE
Use Case Template repository2 provides a starting point for instantiating new use cases, an
appropriate file structure, templates of the necessary configuration files, and tools to input
and convert use-case-specific information into the representation required by the SENSE
Core. Finally, the SENSE Demo Use Case repository3 delivers an exemplary use case that
showcases the capabilities of SENSE but can also serve as a starting point for new
implementations if preferred over the SENSE Use Case Template repository. More detailed
information about the repositories is provided in the README files of the repositories
themselves.

This deliverable also covers the SENSE User Guideline, which suggests a process for users to
follow when applying SENSE to an existing CPS. The User Guideline consists of six consecutive
steps. By following these steps, the user will generate a deep understanding of the goals,
system, data, events, states, causes, and explanations within the system. Furthermore, the
user will document their progress in a pre-defined Excel template, which is then used to
instantiate SENSE for the new use case.

Finally, the deliverable demonstrates how the explanation-interface module of the SENSE
Core enables interaction with conversational user interfaces, such as the ONLIM chatbot. It
allows non-experts to query explanations and find the root cause of problems in a simple and
intuitive manner. In this example, the chatbot backend is hosted on ONLIM’s servers. Making
the chatbot interface accessible to the users can easily be achieved via a very simple
JavaScript snippet, as we exemplified on the project’s website4.

1 https://github.com/wu-semsys/SENSE-Core
2 https://github.com/wu-semsys/SENSE-Use-Case-Template
3 https://github.com/wu-semsys/SENSE-Demo-Use-Case
4 https://sense-project.net

https://github.com/wu-semsys/SENSE-Core
https://github.com/wu-semsys/SENSE-Use-Case-Template
https://github.com/wu-semsys/SENSE-Demo-Use-Case
https://sense-project.net/

4
Deliverable 5.1 – v1.0

5
Deliverable 5.1 – v1.0

Table of Content
History .. 2
Author List .. 2
Executive Summary .. 3
Table of Content .. 5
List of Figures ... 6
List of Tables .. 6
1 Introduction ... 7

1.1 Purpose and Scope of the Document .. 7
1.2 Structure of the Document .. 8

2 Overview of SENSE Repositories .. 9
2.1 SENSE Core ... 9
2.2 SENSE Use Case Template.. 10
2.3 SENSE Demo Use Case ... 11

3 SENSE User Guideline .. 11
3.1 Key Stakeholders for the Process .. 12
3.2 Step 1: Common Conceptualization .. 13
3.3 Step 2: Know Your Goals .. 14
3.4 Step 3: Know Your System ... 14

3.4.1 Define the Concepts that are Present in the System (PlatformTypes,
ObservableProperties) ... 14
3.4.2 Define Instances of Platforms .. 15
3.4.3 Define Hierarchical Relations Between Platforms ... 16
3.4.4 Define Instances of Sensors and Their Hosting Platforms 16

3.5 Step 4: Know Your Data ... 17
3.6 Step 5: Explore Causal Relations in the System ... 17

3.6.1 Discuss Scenarios of Potential Causes ... 18
3.6.2 Define Corresponding States ... 18
3.6.3 Define Events that Start and End States .. 19
3.6.4 Define Causal Relations Between States ... 21

3.7 Step 6: Run Your SENSE Instance ... 22
4 Chatbot Integration ... 22

4.1 SENSE Core Explanation Interface ... 22
4.2 User Interface Website Integration ... 22

5 Summary .. 25
List of Abbreviations .. 26
References ... 27

6
Deliverable 5.1 – v1.0

List of Figures
Figure 1: SENSE Conceptual Components, Their Connections, and Relevant WPs 7
Figure 2: SENSE Core Containers and Interfaces ... 9
Figure 3: Example System Topology .. 12
Figure 4: SystemData.xlsx – PlatformTypes ... 15
Figure 5: SystemData.xlsx – ObservableProperties ... 15
Figure 6: SystemData.xlsx – Platforms ... 16
Figure 7: SystemData.xlsx – Platforms and Hierarchical Relations ... 16
Figure 8: SystemData.xlsx – Sensors .. 17
Figure 9: SystemData.xlsx – Sensors and TimeseriesIds .. 17
Figure 10: Causality Relation Setup ... 18
Figure 11: SystemData.xlsx – StateTypes... 19
Figure 12: SystemData.xlsx – EventStateMapping .. 21
Figure 13: SystemData.xlsx – StateTypeCausality ... 22

List of Tables
Table 1 Partner’s Involvement ... 8
Table 2 Vocabulary Definitions .. 13
Table 3: Signal Property and Parameter Definitions ... 19

7
Deliverable 5.1 – v1.0

1 Introduction
1.1 Purpose and Scope of the Document
This deliverable summarizes the results of Task 5.1 (Technology Stack Implementation) and
Task 5.2 (Chatbot Integration) of the SENSE conceptual components (cf. Figure 1). Thereby,
the results of Task 5.1 form the technical basis for use case implementations, including core
functionalities such as data ingestion, event detection, and explanation generation. In
addition, Task 5.2 establishes the link between the “Cyber Space” and the “Human Sphere”
in Figure 1, enabling users of varying expertise to engage with the SENSE system via a very
intuitive and user-friendly conversational interface. The deliverable interlinks with other tasks
and work packages as follows.

The technology stack is an implementation of the software modules defined in the Auditable
SENSE Architecture developed in Task 3.1 [1]. Details of the Semantic Data Integration &
Storage concepts and the Event Detection Algorithms are described in the deliverables
accompanying Task 3.2 [2] and Task 3.3 [3], respectively. Major contributions to the
technology stack implementation covering the SENSE Semantic Model, Causality Knowledge
Acquisitions, Explanation Generation & Ranking, and Personalised & Actionable Explanations
also originate from Tasks 4.1 – 4.4 [4]. The development of the technology stack
implementation has been driven by and verified with the SENSE Use Cases, primarily based
on the PoC Scope and Definition originating from Task 2.3 [5]. The SENSE technology stack
implementation, including its integration with the ONLIM chatbot platform, will serve as a
basis for the PoC Implementation in Tasks 5.3 and 5.4, and ultimately in their Evaluation in
Tasks 6.1 and 6.2.

Figure 1: SENSE Conceptual Components, Their Connections, and Relevant WPs

This deliverable incorporates many different requirements from all partners involved in

SENSE. An overview of colleagues contributing to this work is summarized in Table 1.

8
Deliverable 5.1 – v1.0

Table 1 Partner’s Involvement

Project Partner Name (Initial) Role/Tasks
WU Marta Sabou (MS) Project Coordination

WU Katrin Schreiberhuber (KS) Explainability

WU Fajar Ekaputra (FE) Explainability, Auditability

WU Mevludin Memedi (MM) Use case elicitation

TU Wien Wolfgang Kastner (WK) Project Coordination

TU Wien Gernot Steindl (GS) Architecture design

TU Wien Thomas Frühwirth (TF) Architecture design

TU Wien Tobias Schwarzinger (TS) Rule-based event detection

TU Wien Mohammad Bilal (MB) Model-based event detection

Siemens Konrad Diwold (KD) Supervisory

Siemens Alfred Einfalt (AE) Supervisory, Smart Grid use case expert

Siemens Daniel Hauer (DH) Smart Grid use case expert

Siemens Juliana Kainz (JK) Smart Grid use case expert

Siemens Rob Poelmans (RP) Smart Grid use case expert

Siemens Gerhard Engelbrecht (GE) Smart Grid use case expert

Siemens Simon Steyskal (SS) Smart Grid use case expert

AEE INTEC Dagmar Jähnig (DJ) Smart building use case expert

AEE INTEC Christoph Moser (CM) Smart building use case expert

MOOSMOAR
Energies

Wolfgang Prüggler (WP) Use case elicitation, economic considerations

Onlim Ioan Toma (IT) Knowledge-driven conversational interface

Onlim Jürgen Umbrich Knowledge-driven conversational interface

1.2 Structure of the Document
The remainder of this document is structured as follows: Section 2 summarizes the contents
of the three main repositories contributing to the SENSE technology stack implementation
and its usability: SENSE Core, SENSE Use Case Template, and SENSE Demo Use Case. It also
provides links to the corresponding GitHub repositories. Section 3 provides a User Guideline
that describes how to collect the necessary data to apply SENSE to an existing CPS. Section 4
covers the concepts and steps for the ONLIM chatbot integration. Finally, Section 5 provides
a short summary of the contents of this document.

9
Deliverable 5.1 – v1.0

2 Overview of SENSE Repositories
The SENSE system currently comprises three repositories hosted on GitHub:

• SENSE Core: https://github.com/wu-semsys/SENSE-Core

• SENSE Use Case Template: https://github.com/wu-semsys/SENSE-Use-Case-Template

• SENSE Demo Use Case: https://github.com/wu-semsys/SENSE-Demo-Use-Case

An overview of the SENSE repositories is provided in the next three subsections. For additional
technical information, refer to the README files of the GitHub repositories.

2.1 SENSE Core
The SENSE Core repository implements the SENSE architecture [1]. It primarily contains the
source code of all SENSE Core modules and instructions in the form of Dockerfiles5 for building
images for each of the modules. Furthermore, it provides additional information on detailed
concepts and functionalities of each module. The SENSE Core repository typically does not
require any changes by the user of SENSE. However, it is still necessary to download/clone
the SENSE Core repository to create Docker images of all modules. The SENSE Core structure
is illustrated in Figure 2 in the form of a C4 container diagram6.

Figure 2: SENSE Core Containers and Interfaces

5 https://docs.docker.com/build/concepts/dockerfile/
6 https://c4model.com/diagrams/container

https://github.com/wu-semsys/SENSE-Core
https://github.com/wu-semsys/SENSE-Use-Case-Template
https://github.com/wu-semsys/SENSE-Demo-Use-Case
https://docs.docker.com/build/concepts/dockerfile/
https://c4model.com/diagrams/container

10
Deliverable 5.1 – v1.0

The structure and interdependencies of the SENSE Core modules are as follows.

• data-ingestion: This module is responsible for feeding sensor readings into the SENSE
system. It currently supports data import from an InfluxDB time series database, as
this is often available in existing CPSs. The module can be configured to replay data
from the time series database for testing purposes. Alternatively, it can be configured
to ingest new data that is added to the time series database into the SENSE system for
"live" operation.

• data-and-event-broker: This module provides a Mosquitto7 MQTT broker for message
exchange between modules. It uses the official Eclipse-Mosquitto docker image.
Hence, no Dockerfile or source code is provided for the data-and-event-broker in this
repository.

• simple-event-detection: This module is responsible for detecting simple events in the
sensor time series data. Events can currently be specified in Signal Temporal Logic
(STL) or using customized event monitors implemented in Python.

• semantic-event-log-bridge: This module is responsible for listening for detected
events and publishing them in the semantic event log, which resides within the
knowledgebase. Currently, only a GraphDB is supported as an event log.

• knowledgebase: This module is responsible for providing semantic data storage to the
SENSE system. It initializes the semantic data storage GraphDB8 with a repository,
named graphs, and TTL files as defined in the configuration.

• event-to-state-causality: This module contains a Java-based application that connects
to the data-and-event-broker, subscribes to a topic, and processes incoming messages
to infer event-to-state causality. The inferred states are then inserted into the
knowledgebase.

• explanation-interface: This module contains a Java-based application that provides
explanations for specific states identified from a semantic model and, if needed, a way
to integrate chatbot data. The application connects to a SPARQL endpoint to fetch
causal relationships and returns them as JSON responses via a Spring-boot API.

2.2 SENSE Use Case Template
The SENSE Use Case Template repository is provided to simplify the instantiation of the SENSE
Core for a new use case. It contains all the files and tools necessary, most importantly,
including the Excel template used to collect the necessary input/configuration data. This Excel
template must be populated following the SENSE User Guideline documented in Section 3.

Once this process is complete, a Python script that is also included in the SENSE Use Case
Template repository has to be executed to export the data collected in Excel into the correct
file format to be used by the SENSE Core. The Template repository uses the use_case_name
as a placeholder, which needs to be replaced with an expressive name for the use case.
Additional information can again be found in the repository’s README file.

7 https://mosquitto.org/
8 https://graphdb.ontotext.com/

https://mosquitto.org/
https://graphdb.ontotext.com/

11
Deliverable 5.1 – v1.0

2.3 SENSE Demo Use Case
In addition to the SENSE Use Case Template repository, the SENSE Demo Use Case repository
provides a relatively simple example instance of the SENSE system. This example fulfills
several purposes:

• serve as an alternative to the SENSE Use Case Template if a user wants to start with
a running example instead of a template

• illustrate the result of the SENSE User Guideline on a more complex example than
used by the User Guideline

• showcase the capabilities of the SENSE system

The example uses case concerns the operation of a regional energy-community (REG) in a
distribution network. REGs are a collective of grid entities which trade energy among each
other and constitute the BIFROST PoC of SENSE.

A REG is usually operated by an energy community operator, which optimizes the energy
exchange to maximize self-consumption among community members. The community must
adhere to an operating envelope, to prevent a transformer overload. In the use case the grid
operator has full information on the grid (i.e., entities not operated in the community), while
the energy community operator has full information on the behavior of its participants, the
planned schedule as well as the actual operation of the community.

If a transformer overload occurs, the grid operator is interested in the nature of the overload.
Was it due to the energy community violating the operating envelope or did a violation occur
despite the community staying within its boundaries (which would suggest that the
forecasting method the grid operator uses to calculate the envelope is insufficient).
From the community's point of view, it should be investigated whether a violation was already
planned in the schedule (deliberate violation), or whether the forecast of certain elements
(e.g. PV production) caused the violation.

The primary focus is to provide event explanations to two key stakeholders: the Energy
Community Operator (ECO) and the Distribution System Operator (DSO). Deliverable 2.3 [5]
provides comprehensive details on the setup, stakeholder objectives, human-machine
interface requirements, and specific scenarios with explanations for both operators.

3 SENSE User Guideline
In this guideline, we outline the steps to be taken to apply SENSE to an existing CPS. We call
this process a SENSE use case instantiation, resulting in a new SENSE use case instance. To
clarify the requirements, we will illustrate the process with a simplified example briefly
introduced in the following. Note that this simplified example only illustrates the steps of this
user guide and should not be confused with the more comprehensive SENSE Demo Use Case.
General information about the process to be followed is written in black text, whereas
everything concerning the example system is added in green text.

As a simplified example, we consider a household with an Electric Vehicle (EV) charger and a
battery. If the EV charger is fast charging an EV, this can cause a peak demand at the

12
Deliverable 5.1 – v1.0

household level. However, this peak only happens if it is enabled by an empty battery. A
sketch of the example setup is depicted in Figure 3.

Figure 3: Example System Topology

In six consecutive sections, starting with Section 3.2, the steps that need to be followed for
applying SENSE to an existing CPS are described. This connection makes semantics-enabled
system explanations possible. While this guideline is a general explanation of the required
steps from an organizational perspective, a more technical explanation can be found in our
Git Repository9.

Additionally, the outcome of this process (after all six steps) is a comprehensive
understanding of the system and its connections. We provide an Excel template (system data
file) to collect this information in a structured format10, which then serves as an input for
parameterizing the SENSE stack according to the use case. We ensure compatibility between
this system data file and the SENSE Core stack. The file consists of multiple tabs and columns,
which are to be filled in throughout the process. In the following steps, we use purple text
when referring to tabs and columns of the Excel template.

3.1 Key Stakeholders for the Process
Integrating the SENSE technology stack into an existing system requires experts from different
areas to collaborate. In practice, a person can take over multiple stakeholder roles. The
following stakeholders are a minimum requirement to ensure a well-defined system and
process:

• System Engineer: a person who knows the system as well as the engineering decisions

that were made to have a running system and understands the physics and causal

relations in the system

• Data Engineer: a person who manages the sensor data collected in the system, knows

the system data, including how the data is stored, how to access it, and metadata such

as measurement units

• Product Owner/Manager: a person who understands the goals of the project and

defines the users and stakeholders of the system

For the example system, we define the stakeholders as follows:

9 https://github.com/wu-semsys/SENSE-Core
10 https://github.com/wu-semsys/SENSE-Use-Case-Template/blob/main/infrastructure/knowledgebase/SystemData.xlsx

https://github.com/wu-semsys/SENSE-Core
https://github.com/wu-semsys/SENSE-Use-Case-Template/blob/main/infrastructure/knowledgebase/SystemData.xlsx

13
Deliverable 5.1 – v1.0

• System Engineer: Electrician who installed the EV and battery and set the thresholds

for the battery management

• Data Engineer: Electrician who has experience with the technical components, their

interfaces, and the data available through sensors

• Product Owner/Manager: Homeowner who has decided to use SENSE in their

household and knows what they want to achieve by using SENSE in the future

3.2 Step 1: Common Conceptualization
All participants working on the use case instantiation should be familiar with the following
terms before proceeding with the guideline.

Table 2 Vocabulary Definitions

Vocabulary Definitions

Type: In this guideline, the terms PlatformType, SensorType, EventType, and StateType are

used. Type in this context means the concept of a thing, in contrast to an instance of a

thing. For example, an ActivePowerSensor as a concept is a SensorType, while

ActivePowerSensor1, installed at VenueA, is a Sensor.

Observable Property: a property, which can be measured by a sensor. For example: active

power, temperature

Platform: a device, or facility of interest. A platform can host sensors, which measure the

properties of this platform. A platform can also host other platforms if they are forming a

part of this platform. Finally, a platform does not need to be a physical entity but can also

be a logical grouping of platforms if needed. For example, a house is a platform, which can

host an ActivePowerSensor measuring ActivePower consumed by the house. A house can

also host other platforms, such as a Battery and an EvCharger. A battery is a platform,

which can host sensors of its own.

Sensor: measures an observable property. Each sensor is hosted by a platform, which

means it is installed on this platform and measures data connected to this platform.

hostedBy: a relation between a platform and its sub-systems. A platform can host sensors

and other platforms. This relation defines the hierarchical topology of the system.

Event: happening at a time point, detected by the event detection module. An event

causes a transition between states.

State: condition of a system over a time period. A state is started and ended by an event.

States are what we aim to explain and what we use within explanations.

Event/State Type: the concept of an event/state. An event/state type is defined by a

detection/conversion rule. These types are representations of possible types of

occurrences in the system, which are of interest.

14
Deliverable 5.1 – v1.0

State Type Causality: a causal relation between two types of states. Each causal relation

has a set of features that define the causal relation in more detail. These features are:

- topological relation: how the cause state type has to relate to the effect state type

topologically for the causal relation to hold between two instances of these states.

There are 3 options:

o samePlatform: cause and effect happen at the same platform

o parentPlatform: the platform of the effect state hosts the platform of the cause

state

o siblingPlatform: the states happen at two distinct platforms hosted by the same

parent

- temporal relation: how the cause state type has to relate to the effect state type

temporally for the causal relation to hold. There are 4 options:

o before: stateA starts and ends before stateB

o overlaps: stateA starts before stateB, but ends after stateB has started

o contains: stateA starts before stateB and ends after stateB has ended

o identity: stateA starts and ends at the same time as stateB

- causal relation: the nature of the causal relation between two state types. There are

three options:

o cause: if stateA occurs, stateB most probably occurs as a result

o enable: if stateA does not occur, stateB most probably does not occur

o prevent: if stateA occurs, stateB most probably does not occur as a result

3.3 Step 2: Know Your Goals
Key Stakeholder: Product Owner/Manager

As the very first step, you need to define the goals of using the SENSE stack in your system.
Which questions should be answered by the system? What are important anomalies you want
to detect and explain? The answers to these questions should always be the guideline for any
decision in the next steps. Data and sensors that help to reach the defined goals should be
identified and included in the SENSE implementation.

In the example system, the SENSE stack should be able to explain why there is a demand peak

at the household level.

3.4 Step 3: Know Your System
Key Stakeholders: System Engineer

The following steps are intended to give guidance on how to approach knowledge acquisition

for your system. However, if necessary or preferred, a different order of steps is also possible.

3.4.1 Define the Concepts that are Present in the System (PlatformTypes,
ObservableProperties)

Before defining the actual topology of the system, create a list of PlatformTypes (devices,

facilities, and groups of sensors that are of interest) and ObservableProperties (properties

that can be measured) in the system. The goal is to define the scope of the system, and which

15
Deliverable 5.1 – v1.0

features are covered. Feel free to come back to this step if, at a later stage, you realize that

some concept is missing.

List all relevant PlatformTypes in the column PlatformType of the tab PlatformTypes.

Sometimes, one PlatformType may be a sub-category of another PlatformType (e.g.,

Supercharger is a sub-category of EvCharger). In this case, the optional column

“subClassOf_PlatformType” can be used to define this relationship between PlatformTypes.

In the example system, we define Household, Battery, and EvCharger as platform types. The

resulting Excel sheet is shown in Figure 4.

Figure 4: SystemData.xlsx – PlatformTypes

List all observable properties relevant to the system in the column ObservableProperty of the
tab ObservableProperties. These are usually the properties that are measured by the sensors
of the system. However, ObservableProperties might include properties indirectly measured
by combining multiple sensor measurements or other means. This list can be extended at any
time. It serves as a list of possible values to be used in the following steps.

In the example, ObservableProperties are ActivePower and StateOfCharge. The resulting

Excel sheet is shown in Figure 5.

Figure 5: SystemData.xlsx – ObservableProperties

3.4.2 Define Instances of Platforms
In this step, the actual platforms and sensors that are present and installed in the system are

to be defined. Some general rules apply:

• Each sensor must be hosted by a platform.

• Each sensor observes an observable property.

• A platform can be hosted by another platform (this is the case if a platform is part of

the other platform).

List all platforms that are present in the system in the column Platform of the tab Platforms

and select the appropriate types via the dropdown in the column PlatformType.

PlatformType subClassOf_PlatformType

Household

Battery

EvCharger

ObservableProperty

ActivePower

StateOfCharge

16
Deliverable 5.1 – v1.0

In the example, there is one household platform (Household1 of type Household), one

battery (Battery1 of type Battery), and one EV charger (EvCharger1 of type EvCharger). The

resulting Excel sheet is shown in Figure 6.

Figure 6: SystemData.xlsx – Platforms

3.4.3 Define Hierarchical Relations Between Platforms
In the next step, the hierarchical relations between platforms are defined via the “hostedBy”

relation. As mentioned above, PlatformA is hosted by PlatformB if PlatformA is part of or

situated within PlatformB.

In the example, EvCharger1 and Battery1 are both hosted by Household1 as they are logically

part of the household. Connections between platforms are defined by the “hostedBy”

relation: (Household1 hosts EvCharger1) and (Household1 hosts Battery1). The resulting

Excel sheet is shown in Figure 7.

Figure 7: SystemData.xlsx – Platforms and Hierarchical Relations

3.4.4 Define Instances of Sensors and Their Hosting Platforms
List all sensors that are installed in the system in the column Sensor of the tab Sensors. For
each sensor, define its location by selecting the corresponding platform for column
hostedBy_Platform, and specify which data is measured in the column
observers_ObservableProperty.

In the example, there is one active power sensor at the household level measuring the total

power used in the household (AP_household1_sensor hosted by Household1, observing

ActivePower), one power sensor at the EV charger (AP_evcharger1_sensor hosted by

Evcharger1, observing ActivePower), one power sensor at the battery (AP_battery1_sensor

hosted by Battery1, observing ActivePower) and one state of charge sensor at the battery

(SOC_battery1_sensor hosted by Battery1, observing StateOfCharge). The resulting Excel

sheet is shown in Figure 8.

Platform PlatformType

Household1 Household

Battery1 Battery

EvCharger1 EvCharger

Platform PlatformType hostedBy_Platform

Household1 Household

Battery1 Battery Household1

EvCharger1 EvCharger Household1

17
Deliverable 5.1 – v1.0

Figure 8: SystemData.xlsx – Sensors

3.5 Step 4: Know Your Data
Key Stakeholders: Data Engineer

We now have a representation of the system, its devices, and the location of sensors that

collect data. In this next step, the data engineer should help in accessing the sensor data. Each

sensor in the system should have a corresponding time series data stream. From an

architectural viewpoint, a dedicated data source could be defined for each sensor. However,

the current implementation expects all measurements to be available in a single InfluxDB

time series database. This time series database is not part of the SENSE system but must be

operated elsewhere.

Virtual sensors: A virtual sensor may be an appropriate solution if an event can be defined by

data that is only implicitly collected (e.g., as a sum of multiple sensors). The value of the virtual

sensor must be calculated outside of the SENSE system, e.g., via a dedicated task in the time

series database, and fed to the SENSE system as any ordinary sensor value.

Connect the sensors to their corresponding time series by adding information on how to

identify the sensor data in the time series database to the column TimeseriesId in the tab

Sensors. Additionally, any virtual sensor must be added to the Sensor tab, and the

corresponding TimeseriesId must be specified.

In the example, all the data is stored in an InfluxDB database. For example, the data of

AP_household1_sensor is stored in the InfluxDB database under the measurement identified

by AP and field name household1.AP. The resulting Excel sheet is shown in Figure 9.

Figure 9: SystemData.xlsx – Sensors and TimeseriesIds

3.6 Step 5: Explore Causal Relations in the System
Key Stakeholders: System Engineer, Product Owner

Sensor hostedBy_Platform observes_ObservableProperty

AP_household1_sensor Household1 ActivePower

AP_evcharger1_sensor EvCharger1 ActivePower

AP_battery1_sensor Battery1 ActivePower

SOC_battery1_sensor Battery1 StateOfCharge

Sensor hostedBy_Platform observes_ObservableProperty TimeseriesId

AP_household1_sensor Household1 ActivePower measurement=AP,field=household1.AP

AP_evcharger1_sensor EvCharger1 ActivePower measurement=AP,field=evcharger1.AP

AP_battery1_sensor Battery1 ActivePower measurement=AP,field=battery1.AP

SOC_battery1_sensor Battery1 StateOfCharge measurement=SOC,field=battery1.SOC

18
Deliverable 5.1 – v1.0

In this step, the causal relations between occurrences in the system should be explored. To

be able to define causal relations, events and states of interest in the system must also be

identified. Based on these events and states, causality knowledge between types of states

can be explored. In Figure 10, all the components belonging to a causality relation are shown.

These causalities should be extracted in a causality workshop with domain experts who know

the general causal relations inside the system. As the basis of the workshop, a list of situations

is collected that need an explanation in the system. The next sections suggest steps to be

followed in a causality workshop.

Figure 10: Causality Relation Setup

In the example, we want to explain a demand peak at the household level.

3.6.1 Discuss Scenarios of Potential Causes

Either while coming up with these situations, or in the next step, write up scenarios, which

could be a potential explanation of the situations. The more potential explanations added in

this step, the more detailed the system will be able to explain situations at runtime.

In the example, a peak in demand can be due to high consumption of the EV charger.

However, this is usually not the only reason, as the battery can counteract this high demand.

Therefore, a low battery state of charge usually also contributes to the peak demand.

3.6.2 Define Corresponding States

Once there is a list of explanations for each situation which should be explained, connect the

explanations to events, states, and causalities in the system. States are happening as time

intervals connected to a single sensor in the system. Events define the start and end of a state.

Causalities define the relations between the states. Defining states, events, and causalities is

an iterative and incremental process. It can very well start with a short list of states, events

that activate and deactivate these states, and causalities between the states. During

discussions, additional states, events, and casualties are often identified and added.

Define system states in the StateType column of the StateTypes tab. Typically, start with the
undesired state that shall be explained and refined from thereon. For each state, select an
associatedObservableProperty and an associatedPlatformType, set isTriggerState to TRUE or
FALSE depending on whether explanation generation should be triggered automatically upon
entering the state, and provide a human-readable Description of the state.

19
Deliverable 5.1 – v1.0

In the example, interesting StateTypes are:

• PeakDemandState can be detected by an ActivePower sensor on the Household

platform. As this State triggers an explanation, isTriggerState is set to TRUE.

• EVHighChargingState can be detected by an ActivePower sensor on the EvCharger

platform.

• BatterySoCLow can be detected by a StateOfCharge sensor on the Battery platform

The resulting Excel sheet is shown in Figure 11.

Figure 11: SystemData.xlsx – StateTypes

3.6.3 Define Events that Start and End States
Next, define the events that activate and deactivate the previously defined states in the

EventStateMapping tab of the Excel sheet. Provide an expressive name for the event in the

column EventType, define StateType_starts and StateType_ends by selecting from the

previously defined states, and specify on which platform (MonitoredPlatform) and on which

sensor (MonitoredSignal11) the event may occur.

In addition to this information, EventTypes need a machine-readable specification for the

SENSE system to be able to detect them. For this reason, we provide predefined signal

properties to be used for EventType definitions.

Select an appropriate SignalProperty that best matches the event to be detected. Next, set

the SignalPropertyParameters of the signal property. The available signal properties and

parameters to select from are explained in Table 3. Some parameters are optional – their

default values are indicated within square brackets [] in Table 3. Each of the parameters can

then either be set to a fixed value (LiteralValue) or be determined by another signal

(SensorValue).

Table 3: Signal Property and Parameter Definitions

Signal
Property

Description Parameter Definitions

Overshoot

The signal rises
above a threshold

• threshold: an event will be fired if the signal rises above the
threshold value under the limitations of the remaining
parameters

• overshoot_margin [0]: an event will only be fired if the
signal rises above the threshold by at least the margin
defined by overshoot_margin

11 Signals is a more common term than sensors in event detection literature. Note that in the SENSE system,
each sensor provides only one signal, making the terms interchangeable.

StateType associatedObservableProperty associatedPlatformType isTriggerState Description

PeakDemandState ActivePower Household TRUE Active Power demand over 50kW

EVHighChargingState ActivePower Evcharger FALSE EV Charger charges at more than 50kW

BatterySoCLowState StateOfCharge Battery FALSE Battery SoC is below 10%

20
Deliverable 5.1 – v1.0

• overshoot_interval [0]: an event will only be fired if the
signal rises above the threshold for at least the duration
specified by overshoot_interval

Undershoot

The signal falls below
a threshold

• threshold: an event will be fired if the signal falls below the
threshold value under the limitations of the remaining
parameters

• undershoot_margin [0]: an event will only be fired if the
signal falls below the threshold by at least the margin
defined by undershoot_margin

• undershoot_interval [0]: an event will only be fired if the
signal falls below the threshold for at least the duration
specified by undershoot_interval

OutOfBounds The signal leaves a
predefined band
either in the upper or
lower direction

• upper_threshold: an event will be fired if the signal rises
above the upper_threshold under the limitations of the
remaining parameters

• upper_threshold_margin [0]: an event will only be fired if
the signal rises above the upper_threshold by at least the
margin defined by upper_threshold_margin

• upper_threshold_interval [0]: an event will only be fired if
the signal rises above the upper_threshold for at least
the duration specified by upper_threshold_interval

• lower_threshold: an event will be fired if the signal falls
below the lower_threshold under the limitations of the
remaining parameters

• lower_threshold_margin [0]: an event will only be fired if
the signal falls below the lower_threshold by at least the
margin defined by lower_threshold_margin

• lower_threshold_interval [0]: an event will only be fired if
the signal falls below the lower_threshold for at least the
duration specified by lower_threshold_interval

WithinBounds The signal enters a
predefined band

• upper_threshold: an event will be fired if the signal falls
below the upper_threshold under the limitations of the
remaining parameters

• upper_threshold_margin [0]: an event will only be fired if
the signal falls below the upper_threshold by at least the
margin defined by upper_threshold_margin

• upper_threshold_interval [0]: an event will only be fired if
the signal falls below upper_threshold –
upper_threshold_margin for at least the duration
specified by upper_threshold_interval

• lower_threshold: an event will be fired if the signal falls
below the lower_threshold under the limitations of the
remaining parameters

• lower_threshold_margin [0]: an event will only be fired if
the signal rises above the lower_threshold by at least the
margin defined by lower_threshold_margin

• lower_threshold_interval [0]: an event will only be fired if
the signal rises above the lower_threshold +
lower_threshold_margin for at least the duration
specified by lower_threshold_interval

RiseTime

The signal rises by a
certain amount
within a defined time
span

• delta: an event will only be fired if the signal rises by at
least the value defined by delta under the limitations of
the remaining parameters

• rise_time: an event will only be fired if the signal rises by
delta within the time interval defined by rise_time

21
Deliverable 5.1 – v1.0

FallTime The signal falls by a
certain amount
within a defined time
span

• delta: an event will only be fired if the signal falls by at least
the value defined by delta under the limitations of the
remaining parameters

• fall_time: an event will only be fired if the signal falls by
delta within the time interval defined by fall_time

StableTime The signal is stable
for a defined time
span

• maximum_delta: an event will be fired if the signal rises and
falls by less than the value defined by maximum_delta
under the limitations of the remaining parameters

• stable_time: an event will only be fired if the signal is stable
for at least the time interval defined by stable_time

In the example, the relationships between states and events (the event-state-mapping) and

the event definitions are

• PeakDemand is started by a ThresholdViolatedEvent (AP sensor > 50kW) and is ended

by a ThresholdNormalEvent (sensor <= 50kW).

o The ThresholdViolatedEvent is formally expressed via an Overshoot signal

property with a threshold of 50 (LiteralValue)

o The ThresholdNormalEvent is formally expressed via an Undershoot signal

property with a threshold of 50 (Literal Value)

• EVHighCharging is started by an EVHighChargingEvent (sensor > 50kW) and is ended

by an EVNormalChargingEvent (sensor <= 50kW).

o The EVHighChargingEvent is formally expressed via an Overshoot signal

property with a threshold of 50 (LiteralValue)

o The EVNormalChargingEvent is formally expressed via Undershoot signal

property with a threshold of 50 (LiteralValue)

• BatterySoCLow is started by a BatterySoCDepletedEvent (SoC < 10%) and is ended by

a BatterySoCNormalEvent (SoC > 10%)

o The BatterySoCLow is formally expressed via an Undershoot signal property

with a threshold of 10 (LiteralValue)

o The BatterySoCNormalEvent is formally expressed via an Overshoot signal

property with a threshold of 10 (LiteralValue)

The resulting Excel sheet is shown in Figure 12.

Figure 12: SystemData.xlsx – EventStateMapping

3.6.4 Define Causal Relations Between States
Define causal relations between states in the StateTypeCausality tab. Select one state in the

StateType_cause column and another state in the StateType_effect column and then define

EventType StateType_starts StateType_ends MonitoredPlatform MonitoredSignal SignalProperty

Name Type

Literal

OrSensor

ThresholdViolatedEvent PeakDemandState Household HouseholdActivePowerSensor Overshoot threshold LiteralValue 50

ThresholdNormalEvent PeakDemandState Household HouseholdActivePowerSensor Undershoot threshold LiteralValue 50

EVHighChargingEvent EVHighChargingState EvCharger EVActivePowerSensor Overshoot threshold LiteralValue 50

EVNormalChargingEvent EVHighChargingState EvCharger EVActivePowerSensor Undershoot threshold LiteralValue 50

BatterySoCDepletedEvent BatterySoCLowState Battery BatteryStateOfChargeSensor Undershoot threshold LiteralValue 10

BatterySoCNormalEvent BatterySoCLowState Battery BatteryStateOfChargeSensor Overshoot threshold LiteralValue 10

SignalPropertyParameter1

start defining your events in the next line

22
Deliverable 5.1 – v1.0

their relation via the causalRelation, temporalRelation, and topologicalRelation properties as

defined in Table 2.

In the example, causalities between the StateTypes are known as follows:

• EVHighChargingState causes a PeakDemandState, if the states overlap and there is a

parentPlatform relation.

• BatterySoCLowState enables the PeakDemand if the states overlap and there is a

parentPlatform relation.

The resulting Excel sheet is shown in Figure 13.

Figure 13: SystemData.xlsx – StateTypeCausality

3.7 Step 6: Run Your SENSE Instance
Key Stakeholders: Data Engineer (Knowledge Engineer)

Based on the previous steps, you should have all the data necessary to run a SENSE instance

for your use case. The person responsible for the implementation should have a look into the

repository and the respective README file, where the steps to create a new SENSE instance

are described: https://github.com/wu-semsys/SENSE-Use-Case-Template.

4 Chatbot Integration
While the technical core of the SENSE system provides its main functionalities, such as data

ingestion, event detection, and explanation generation, interlinking it with a conversational

user interface greatly improves its usability by non-domain experts. To this end, we

conducted a set of experiments and exploration for integrating the SENSE system with

chatbots, focusing on ONLIM Chatbot.

On the technical level, we are working on supporting chatbot integration around three main

capabilities: (a) knowledge graph (KG) enrichment, (b) faceted event explanation generation,

and (c) dynamic knowledge retrieval. These components are designed to support more

intelligent, context-aware, and explainable chatbot interactions.

4.1 KG enrichment

Due to the complex processes involved in chatbot operations, it is often necessary to

preprocess and enrich existing knowledge—whether in textual or graph form—to align it with

the chatbot’s internal knowledge model in facilitating seamless conversation between users

and the chatbot. In the context of SENSE project, such knowledge is provided as a knowledge

graph based on the SENSE ontology, which captures various aspects of cyber-physical systems

(CPS), such as topology, observation, causality.

StateType_cause causalRelation temporalRelation topologicalRelation StateType_effect

EVHighChargingState causes overlaps parentPlatform PeakDemandState

BatterySoCLowState enables overlaps parentPlatform PeakDemandState

https://github.com/wu-semsys/SENSE-Use-Case-Template

23
Deliverable 5.1 – v1.0

To support integration between Chatbot internal knowledge representation and the SENSE

knowledge graph, we developed a dedicated API endpoint (POST

/v1/api/integration). This endpoint processes and queues new instances of our

knowledge graph while allowing for their preprocessing and alignment with chatbot-specific

knowledge extensions, such as linking sensor data or contextual information to improve

response relevance.

Currently, we have implemented a single instance of this functionality, which focuses on

aligning key terminologies between the SENSE ontology and the ONLIM chatbot knowledge

model for our proof-of-concept (PoC) scenarios. In the future, we aim to extend this

functionality to support more sophisticated integration mechanisms and enable richer

chatbot capabilities.

4.2 Faceted Event Explanation

The faceted event explanation provides chatbot with access to context-specific insights of the
system’s behavior. Through the API endpoint (GET /v1/api/explanations), chatbot
can retrieve explanations on specific events based on a given datetime (e.g., through start-
and end-time), system topology (e.g., explanation pertaining to specific devices or platforms),
and user access control (e.g., through predefined user role definition.

This capability helps the chatbot explain why certain events —such as changes in battery
demand—occurred, fostering transparency and user trust. Furthermore, we are currently in
the process of pre-selecting a set of SPARQL queries that will be available for both chatbots
and users alike, focusing not only on the event explanations, but also context information
around the explanation, such as topology information as well as specific observation data
leading to the explanation.

4.3 Dynamic Knowledge Retrieval

To handle the complexity of chatbot user queries, it is often insufficient to rely solely on a

predetermined set of queries. Therefore, the SENSE framework must support dynamic

knowledge retrieval at runtime. To achieve this, the SENSE framework offers two mechanisms

for dynamic data access.

The first is SPARQL Endpoint Access. SENSE provides a dedicated SPARQL endpoint (POST

/v1/api/explanations/sparql) that enables users and developers to perform

semantic queries over the knowledge graph. This approach supports flexible information

retrieval and enables advanced chatbot capabilities such as context-tailored responses and

analysis over aggregated data.

The second mechanism is Snapshot Synchronization. In this approach, the SENSE Knowledge

Graph is periodically archived in a repository, e.g., through GitLab. The chatbot engine can

then acquire this data into its internal repository to be used for the conversation. This method

24
Deliverable 5.1 – v1.0

is particularly useful when complex pre-processing is required before the data can be used,

making it a necessary complement to real-time querying.

25
Deliverable 5.1 – v1.0

5 Summary
This deliverable summarizes the results of the SENSE Technology Stack Implementation task.
The main contributions are provided via the GitHub repositories of the SENSE Core, SENSE
Use Case Template, and SENSE Demo Use Case.

Furthermore, the deliverable provides the SENSE User Guideline, a step-by-step process that
needs to be followed when applying SENSE to an existing CPS. For the current version of
SENSE, this process involves filling in an Excel template to collect information about the
sensors, data sources, events, causalities, and explanations. Information in this template is
then used to configure the new SENSE instance.

Finally, the deliverable illustrates how the explanation-interface module of the SENSE Core
provides an interface for conversational user interfaces, such as the ONLIM chatbot. This is
crucial for making the data and explanations accessible to non-expert users in an intuitive and
user-friendly way.

26
Deliverable 5.1 – v1.0

List of Abbreviations

Short Description

API Application Programming Interface

CPS Cyber-Physical System
EV Electric Vehicle

JSON JavaScript Object Notation
SENSE Semantic-based Explanation of Cyber-physical Systems

SPARQL SPARQL Protocol and RDF Query Language

STL Signal Temporal Logic

TTL Terse RDF Triple Language; Turtle

27
Deliverable 5.1 – v1.0

References

[1] T. Frühwirth, G. Steindl, T. Schwarzinger and F. Ekaputra, "SENSE Deliverable 3.1
Auditable SENSE Architecture," 2024.

[2] B. Mohammad and T. Frühwirth, "SENSE Deliverable 3.2: Semantic Data Integration
Methods," 2024.

[3] T. Frühwirth, T. Schwarzinger and M. Sabou, "SENSE Deliverable 3.3: Anomaly and Event
Detection Algorithms," 2024.

[4] K. Schreiberhuber, M. Memedi, F. J. Ekaputra and M. Sabou, "SENSE Deliverable 4.1 (v2):
Semantic-Based Explainability Framework," 2024.

[5] R. Poelmans, C. Moser, J. Kainz, D. Hauer, K. Diwold, A. Einfalt, D. Jähnig and T. Frühwirth,
"SENSE Deliverable 2.3: Definition of POCs," RESTRICTED ACCESS, 2024.

	History
	Author List
	Executive Summary
	Table of Content
	List of Figures
	List of Tables
	1 Introduction
	1.1 Purpose and Scope of the Document
	1.2 Structure of the Document

	2 Overview of SENSE Repositories
	2.1 SENSE Core
	2.2 SENSE Use Case Template
	2.3 SENSE Demo Use Case

	3 SENSE User Guideline
	3.1 Key Stakeholders for the Process
	3.2 Step 1: Common Conceptualization
	3.3 Step 2: Know Your Goals
	3.4 Step 3: Know Your System
	3.4.1 Define the Concepts that are Present in the System (PlatformTypes, ObservableProperties)
	3.4.2 Define Instances of Platforms
	3.4.3 Define Hierarchical Relations Between Platforms
	3.4.4 Define Instances of Sensors and Their Hosting Platforms

	3.5 Step 4: Know Your Data
	3.6 Step 5: Explore Causal Relations in the System
	3.6.1 Discuss Scenarios of Potential Causes
	3.6.2 Define Corresponding States
	3.6.3 Define Events that Start and End States
	3.6.4 Define Causal Relations Between States

	3.7 Step 6: Run Your SENSE Instance

	4 Chatbot Integration
	4.1 KG enrichment
	4.2 Faceted Event Explanation
	4.3 Dynamic Knowledge Retrieval

	5 Summary
	List of Abbreviations
	References

