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1 Introduction
The SENSE project aims to develop Explainable Cyber-Physical Systems (ExpCPS) that allowvarious interested stakeholders to understand system events. The project hypothesises thatproviding more transparency into CPS event explanations could boost efficiency, make themmore user-friendly, and affect environmental sustainability.The WP4 of the SENSE project aims to provide semantics-based event explainability overintegrated CPS data, building on the integrated CPS data collected and integrated in WP3 ofthe project. To this end, WP4 contains four tasks as the following:

• T4.1 The SENSE semantic model definition. This task focuses on designing and developinga semantic model for knowledge-driven event explainability. The SENSE semantic modelwill consist of: (a) an overarching model for causality knowledge, (b) a model to describeCPS and their contexts, e.g., topology and environments, and (c) domain-specific modelsto capture specific data and information from use cases.
• T4.2 Type causality knowledge acquisition, focuses on employing automatic causal discov-ery methods to support domain experts in identifying type causality between CPS events.
• T4.3 Explanation generation and ranking, aiming to provide methods to generate andrank explanations for CPS events. The following steps to achieve our goals: (a) identifi-cation of actual causality knowledge between CPS events based-on type causality knowl-edge, (b) generation of causality paths based on actual causality for selected events, and(c) Ranking of the identified causality paths. First results of this task are published in apaper accepted at the 2024 Energy Informatics DACH+ Conference [2].
• T4.4 Personalized and actionable explanation. This task includes identifications and de-scriptions of user profiles to allow personalized explanations and represent them as aknowledge graph.
The work on WP4 will be conducted mainly by WU with the support and contributionsfrom other SENSE project partners. The collaboration especially important on T4.1 towards thedevelopment of the SENSE semantic model. The list of involved partners is provided in Table 1.

Table 1: List of Involved project partners and members

Project Partners Project MembersWirtschaftsuniversität Wien Katrin Schreiberhuber, Fajar J. Ekaputra, Marta Sabou,Mevludin MemediTU Wien Gernot Steindl, Thomas Frühwirth, Muhammad BilalSiemens AG Österreich Konrad Diwold, Daniel Hauer, Simon SteyskalAEE INTEC Christoph MoserMOOSMOAR Energies OG Wolfgang Prüggler
This deliverable is the second version of D4.1, which will be updated periodically (we planto deliver the next version in M30) and includes progress and results from all four tasks inWP4. The rest of the deliverable is structured as follows: Section 2 reports the result of T4.1 onthe SENSE semantic model, Section 3 describes the related work and experiments conductedon type causality knowledge acquisition of T4.2, Section 4 narrates our current result on theexplanation generation and ranking algorithms, as well as its implementation and evaluationresult in one of SENSE use case, and Section 5 outlines the result of our initial literature studyon the topic of personalized and actionable explanation.
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2 Semantic Model for Explainability
This task focuses on designing and developing semantic model necessary for knowledge-drivenevent explainability. The goal of the SENSE semantic model is to provide a solid basis for thedevelopment of (a) causality knowledge representation, (b) models to describe CPS and theircontexts, e.g., topology and environments; and (c) domain-specific models to capture specificdata and information from use cases.
2.1 Methodology
In this task, we followed the Linked Open Terms (LOT) methods [3] to develop the SENSE on-tology.LOT consists of four main steps: (i) Ontology Requirement Specification step, which resultedin a conceptual Ontology Requirement Specification Document (ORSD), (ii) Ontology Imple-
mentation step, where the requirements are implemented in a specific ontology language andevaluated using ontology evaluation tools, (iii) Ontology Publication step, where the ontologydeveloped in previous step is published and documented in a web page, typically using pub-lishing tools such as Widoco [4], and (iv) Ontology Maintenance step, where issues and bugsare collected, reported and used inputs to further develop and maintain the ontology in thefuture.The focus of the T4.1 in this reporting period is on Step (i) and (ii). As part of the first stepof Ontology Requirement Specification, we have conducted a series of workshops to gatherinputs and requirements for the SENSE semantic model. The result of these workshops andthe following analysis are collected in the following documents:

• The SENSE ORSD document1, containing a high-level specification document of the SENSEontology. This document contains links to the other documents: UC requirements docu-ment and the Modeling Data document.
• the UC requirements document2, which reported the relevant competency questions, theorigin and importance, and the subsequent answers to the questions.
• the Modeling Data (MODA) document3. This document contain the identified classes,properties, relations, as well as property of relations that are necessary for the SENSEontology. Note that this document is not yet specific to specific modeling language.
In the Step (ii), we implemented the first draft of the ontology using Draw.io and Chowlkconverter[5] within iterations. Furthermore, we evaluated the developed SENSE ontology us-ing tools (e.g., OOPS [6]) and discussion with use case partners.

2.2 The SENSE Ontology v2
We propose an integrated data model as the foundation of an ExpCPS framework that is appli-cable across various CPS domains. The data model plays a key role in our approach as a meansto facilitate the integration of diverse data sources for comprehensive system understandingand to enable root cause analysis. While different technologies can be used to implementthe data model, we use semantic web technologies to exemplify the implementation of the

1”LOT common ORSD v1.0.0.docx”, the file is available on project repository2”LOT UC Requirements v1.0.0.docx”, the file is available on project repository3”LOT MODA v1.0.0.docx”, the file is available on project repository
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model and to visualise its structure. A semantic model serves as a structured representationof knowledge or information, designed to improve understanding by both humans and ma-chines. It relies on an ontology, which acts as a schema for representing a specific domain [7].Instantiating an ontology with data points results in the creation of a KG, where concepts andentities are uniquely identified using URI to ensure reusability. The semantic model buildsupon the RDF [8] for creating a graph-based data structure. In the prototype, data points arepublished to the data model in RDF serialized in the Turtle format.The data model consists of four parts, which focus on different aspects of the ExpCPS frame-work (i) System Topology (ii) Events and States (iii) Causal Knowledge (iv) User Context. In Fig. 2,the data model is shown as an ontology. Each concept or entity is identified by a URI. Prefixesare defined to abbreviate long URI strings The ontology implementation of the integrated datamodel is documented and published online4, using WIDOCO [4] for the creation of a documen-tation of the Ontology.We describe a motivating example of an ExpCPS from the area of SG to clarify our context.In this example, we introduce a public EV charging garage, which is directly connected to alocal transformer. As the garage is a major energy consumer in the area, an operating enve-lope is imposed on the facility. This means, the facility operator needs to make sure that theelectricity demand of the facility from the local grid stays within an agreed limit (within theoperating envelope). Fig. 1 depicts the setup of the example use case. The garage has multiplechargepoints, where an EV can charge. It also has a battery installed, which can be used forpeak shaving in times of high consumption. Multiple sensors are installed at various devices(indicated as gray circles), which take measurements of various observable properties, such asAP, SoC, OE.During the operation of the garage, no envelope violation should occur, as the garage issupposed to regulate the use of its components autonomously, avoiding any violation of theimposed operating envelope. However, there are situations, where violations still happen. Ifthey do, the facility operators as well as the distribution system operator (DSO) will requestan explanation of why the violation has happened. An example explanation, which can bederived from the use case in Fig. 1 would be ”EnvelopeViolationState4 occurred due to
HighChargingState3 at EVCharger1, which could not be balanced out by the Battery as itwas empty (LowBatterySocState2). High Charging Activity for multiple hours preceding theViolation has led to an empty battery (HighChargingState1)”.
2.2.1 System Topology
The System Topology contains information about the system setup, all the devices in the sys-tem as well as the sensors, which provide a continuous data stream of system measurementsat runtime. The topology information specifies the positions of the devices and their phys-ical and logical connections. To represent the topology of a system, we use four core con-cepts: platform, sensor and observable property. The terms are derived from the SOSA Ontol-ogy5, a ”lightweight general-purpose ontology to represent the interaction between entities”in CPSs [9]. Additionally, we introduce the concept of sensor type, as a separate class to definethe properties of sensor types independent of a specific instance of a sensor.A Platform is an entity that hosts other entities, particularly sensors, and other platforms(e.g., EV charger, battery, garage). Platforms are devices or facilities within a system, wheresensors are located.

4http://w3id.org/explainability/sense#5https://www.w3.org/TR/vocab-ssn/
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Figure 1: Left: EV garage as motivating example, showing ActivePower(AP), StateOfCharge (SoC), Operating En-
velope (OE) sensors in blue, events and states connected to the sensors in green.
Right: topological representation of the motivating example according to the ontology.

A Sensor is a device or agent, which collects data measurements of an observable property(e.g., AP). Sensors are hosted by a platform, which means a sensor is located at/within a Plat-form and its measurements correspond to this platform (e.g., EVCharger1 hosts APSensor3 inFig. 1). Each sensor stores information on how to access its sensor measurements (e.g., accesstoken to a timeseries database).A SensorType is a concept of a sensor, defining the purpose of a specific type of sensorand its relation to other concepts. Each sensor has a sensor type, which defines the type ofmeasurements it can take and what types of states are possible at the sensor.An Observable Property is an observable quality (property, characteristic) in the system.Each sensor observes an observable property. (e.g., APSensor3 observes ActivePower).By using these concepts (Platform, Sensor, Sensor Type, Observable Property), the systemsetup can be represented in sufficient detail to facilitate event explainability. It enables thedescription of which sensors are located at which platform, what a sensor measures, where tofind measurement data and how platforms are connected to each other.
2.2.2 Events and States
The Events and States data contains any information connected to the event detection andstate derivation process. It contains event detection methods for each event type that is imple-mented to detect events. Additionally, it stores a priori information about the event-to-statetype mapping between event types and state types. At runtime, detected events as well asstates that are derived from these events are collected and stored in this module. As an exam-ple, HighChargingEvent4 is detected at "2023-04-11 10:12:45Z" by APSensor3 hostedby Charger1 in the motivating example from Fig. 1.

Event: Each event (e.g., HighChargingEvent4) is stored in the data base, including addedsemantics about the event:
• eventType of the event that was detected (e.g., HighChargingEvent)
• procedure that is responsible for the detection of the event (e.g., HighChargingDetection-
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Figure 2: Integrated Data Model represented as an ontology

Query). A procedure can be a query, a model, or any function that is responsible for theevent detection.
• sensor where the observation was made (e.g., APSensor3)
• timestamp of the event (e.g., "2023-04-11 10:12:45Z")
• observableProperty that was observed to detect the event (e.g., ActivePower)
State: The State Derivation Module is responsible for deriving states from detected eventsusing the event-to-state mapping. A new state (e.g., HighChargingState3 in Fig. 1) is storedin the database including the following semantics:
• stateType of the state (e.g., HighChargingState)
• startEvent that has started the state (e.g., HighChargingEvent4)
• endEvent that has ended the state (e.g., NormalChargingEvent6); if the state has notbeen ended yet, it is also possible that there is no endEvent related to the state (e.g., see

EnvelopeViolationState4 has no endeEvent (yet))
• observableProperty that was responsible to detect the event (e.g., ActivePower)
Users can query for potential root causes of specific system states. More information onthe identification of a root cause for a trigger state is provided in Sections 4.
Event-to-Statemapping: Each event type represents a state transition between state types,which is defined a priori (e.g., HighChargingEvent starts HighChargingState, and Normal-

ChargingEvent ends HighChargingState). The state derivation module uses this informa-tion combined with topology data to identify which state has been changed at which sensorby a certain event (e.g., HighChargingEvent4 at APSensor3 starts HighChargingState3 at
Deliverable 4.1 (v2) – v2.0 9



APSensor3 as a result of the event-to-state mapping indicating HighChargingEvent starts
HighChargingState).
2.2.3 Causal Knowledge
The causal knowledge data is a description of causal relations between state types. Eachcausality relation consists of a cause state type and an effect state type as well as three param-eters (causal, temporal, topological) that give detailed information on the nature of the causalrelation. We rely on the definition in the Causal and Temporal Relation Scheme (CaTeRS) [10]for causal and temporal relations. An example of such a relation is:

HighChargingState (cause state type)
causes (causal) an
overlapping (temporal)
EnvelopeViolationState (effect state type) at
parentPlatform (topological)

Each part of the causal relation is described in more details below.
cause state type and effect state type: A state type is the concept of a state. It has adescription of what characteristics this type of state exhibits (e.g., HighChargingState is astate when an EVCharger charges more than 50kW). A state type is not related to a specifictime or place. It is a concept of a state that can occur at runtime.
causal: The causal relation defines a more detailed view of the type of causality as com-pared to a simple ”caused by” relation. There are three types of causal relations that can occurbetween two states (stateA→ stateB):
• cause: If stateA occurs, stateB most probably occurs as a result.
• enable: If stateA does not occur, stateB most probably does not occur (not enabled tooccur).
• prevent: If stateA occurs, stateB most probably does not occur as a result.
By providing a more detailed description of a causal relation, intricate relations betweenstate types can be represented, such as ”LowBatterySoCState prevents BatteryDischarge-

State, while BatteryUnusedState (i.e. the non-existence of BatteryDischargeState) en-ables EnvelopeViolationState”.
temporal: The temporal relation captures the temporal aspects of a relation between twostates. There are two options for temporal relations (stateA → stateB) that showed to berelevant for representing causal knowledge:
• before: stateA starts and ends before stateB.
• overlaps: stateA starts before stateB, but ends after stateB has started.
topological: The topological relation considers the logical/hierarchical relation betweentwo states as a constraint for the causal relation to hold. We consider a hierarchical repre-sentation of platforms and their sensors. A state is always associated with one or more sen-sors, hosted by a platform. In Fig 1, the topology representation of the motivating exampleis depicted on the right side. Platforms are shown in light blue, while sensors are shown indark blue. Three types of topological relations are defined as causal constraints. each of therelations is described below and exemplified in red in Fig. 1:

Deliverable 4.1 (v2) – v2.0 10



• samePlatform: stateA and stateB are associated with a sensor on the same platform(e.g.,SoCSensor2 and APSensor2 are associated to the same platform Battery1).
• parentPlatform: stateA is associated with a sensor on a platform that is hosted by theplatform of stateB (e.g., APSensor1 is associated with Garage1, which is the parent plat-form of EVCharger1. APSensor3 is associated with EVCharger1, forming a parent-

Platform relation from APSensor3 to APSensor1). Note that this relation is the onlynon-symmetric topological relation.
• siblingPlatform: stateA is associated with a sensor on a platform that is hosted by thesame platform as the platform associated with stateB (e.g.,APSensor3 is associated with

EVCharger1 and APSensor4 is associated with EVCharger2. Both platforms are hostedby Garage1, so the two sensors are hosted by siblingPlatforms).
The definition of these relations can be extended if needed for specific domains or usecases.A thoroughly crafted causal knowledge dataset is crucial for the explanation engine to pro-vide meaningful and correct explanations of states. This knowledge not only provides infor-mation about causality, but it also provides information on which types of states are relevant.Therefore, it serves as an indication to create corresponding event detection procedures in theevent detection module of the ExpCPS framework.

2.2.4 User Context
The user context module contains any information connected to a user of the SENSE System.Each user has a certain role in the system, preferences, access rights, and system states they areinterested in, which influence the explanation the will get. In order to create a user-centeredand actionable explanation, all of these features need to be known to the system.

User: Each user, who is interested in receiving an explanation from the SENSE System isstored in the knowledge based, together with their features:
• UserType defines a user in terms of their preferences for a specific explanation medium,or technicality level of an explanation (e.g. lay user vs technical user)
• UserRole defines a user in terms of the user context inside the system a user role definesthe access rights of a user within the system. View Access Rights define what Platformsa user can know about, thus which platforms are included in an explanation for this user,while Control Access Rights define the Mitigation Options, which are presented to theuser (e.g. unplugging an EV can only be a valid mitigation option for the owner of the EV).
MitigationPlan: Is a plan, which is defined for a certain state type, and it lists a set of optionsto avoid/mitigate a certain type of state. Each option requires specific control access rights tobe conducted.
Explanation: An explanation stores the user-centered version of a causal path, which de-pends on the User Type, ViewAccessRights and ControlAccessRights of a user. Each explanationis designed for a user of the system and explains a state instance. Based on the user and thecausal path, mitigation options are presented to a user.
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3 Type Causality Knowledge Acquisition
3.1 Towards causality identification problem: From time series to causal-ity relations
Understanding how a set of variables are related is becoming and important aspect when de-veloping an information system that makes decisions using large amount of observational data.Having knowledge about causal relationships between variables help in comprehending thedynamics behind complex systems. Data-driven methodologies using statistics and machinelearning (ML) allow processing vast amounts of data and applying algorithms to find causalrelationships among variables with the aim of establishing causality.Causality of X → Y (→meaning X causes Y) can be defined if and only if an intervention ormanipulation in X affects Y, where X is known as independent, or cause variable and Y is knownas dependent or effect variable. In complex systems, the effects are known events and aretime specific. One approach is to calculate correlation coefficient between the variables. Nev-ertheless, the measure of correlation provides the degree of association and does not considerthe directionality of the relationship. Therefore, more advanced measures should be used toprovide the directionality among the variables.Identifying causality relations among multiple variables in complex systems is crucial for un-derstanding the underlying characteristics and dynamics of the system. Such exploratory dataanalysis as suggested by [11] would help in getting insights on how the different system com-ponents interact and influence each other over time, which in turn could be helpful makinginformed decisions. Another benefit is gaining knowledge on cause-and-effect relationshipsthat can be used for predicting future states or events within the system and regulate the sys-tem more effectively. However, the task of inferring causality relation among variables comeswith a set of challenges. In complex systems, interactions between variables can be nonlinearand there can be time delays between the variables. There can also be confounding variablesthat may influence both the cause and effect and can complicate the process of causal infer-ence. Additionally, causal relationships among variables within a system can change over timeand failing to capture such changes may result in misleading conclusions.Time series data of complex systems describe traces of systems over time and can be usedas inputs to quantitative methods for inferring causality relations between them. Time seriescan be derived as observations recorded during experiments or sensors collected over time.The goal of time series analysis for causal identification in complex and dynamic systems isto statistically and reliably estimated causal links, including their time lags [12]. The causalityidentification problem is related to the challenge of extracting causal relationships betweenvariables based on observed time-series data. For instance, consider a set of variables de-noted as X1, X2, . . . , Xn, where each X represents a time-varying variable within a complexsystem M (figure 3, [1]). The main aim of the analysis is to determine whether there exists acausal relationship between a variable Xj (the cause) and a target variable Xk (the effect).The causality identification problem involves detecting whether changes in the values of Xjinfluence changes in the values of Xk. The two aims of such analysis would be to detect gen-eral causal interactions among the components of M, including time lags and to quantify thestrength of causal interactions within M in a well-interpretable way.The challenge during causality identification from time series data is in estimating a func-tion that represents the causal relationship and determining the appropriate time lag or delaybetween the cause and effect. Various methods such as Granger causality tests and struc-tural equation modeling, which are statistical methods, and Transfer Entropy (TE), which is an
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Figure 3: The process of analyzing different time series within a complex system to extract causality relationships
between them [1]

information-theoretic method, are employed to address this problem.
3.2 Related Work
Time series are present in various forms and can be generated in different domains, for in-stance in healthcare through monitoring systems using devices and sensors, industry throughpredictive maintenance systems, and other application domains by using data such as images,acoustic signals, etc.In literature, many studies have focused on identifying causality problem and many tech-niques have been introduced. The very first work on causality inference was presented by CliveGranger in 1969 [13] where the Granger causality test was introduced. This method has beenwidely used studies dealing with, but not limited to, econometrics time series data. The ideawith the method is to determine if a time series can be used to predict the future values ofanother time series. This method was to study brain connectivity using neuroimaging timeseries [14]. In the paper by Sugihara et al. [15] causality methods were used to infer causal-ities within climate systems based on analysis of time series data. The paper addressed thechallenges of processing time series where there are nonlinear and non-stationary dynamics.When determining causation in time series there is a need to model the delayed causation be-tween them and this need inspired the development of vector autoregression, which involvesanalyzing previous data samples with current ones to determine delayed causal links [16]. Onedrawback of this method is that when applied in datasets with high dimensionality it can leadto low detection power. In addition, when dealing with time series data one important aspectis to consider methods that are robust to detect non-linear interactions and operate withoutany priori model. Granger causality test does not address nonlinearity in time series.Another method that has been applied in literature is TE. TE is like Granger causality [17].Nevertheless, Granger causality is not good for modelling non-linearity in the time series. Thisdrawback of Granger causality is related since it is based on linear models and is not appro-priate for nonlinear systems. TE has been proved as effective measure of capturing dynamicalfeatures among different components in time series. TE has been applied in different applica-tion domains. TE has been used by in a real-world dataset consisting of financial time seriesto characterize the information flow among different stocks [18]. Additionally, it has been ap-plied in neuroscience for identifying causal interactions in brain networks [19]. TE has been
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used as a metric to detect presence of nonlinearity in health monitoring systems [20]. Even TEhas its own disadvantages. It is more challenging to be automated, computationally intensive,and more complex to interpret [21]. To overcome these issues and at the same time accountfor non-linearity in time series some methods have been proposed utilizing ML methods. Forinstance, Tank et al. [22] suggested a new, extended Granger-based model using StructuredMultilayer Perceptrons or Recurrent Neural Networks. Similarly, Nauta et al. [23] has proposeda new method for discovering causal relationships in time series data using attention-basedConvolutional Neural Networks. Rossi et al. [24] presented a software tool implementing anarchitecture of timed-delayed neural networks (TDNNs) for causality-detection in physical timedependent systems. TDNNs has been shown to perform well and does not require an extensiveamount of data to provide robust conclusions.
3.3 Causality detection algorithms implemented in the SENSE project
In this section of the report, we will provide a summary of the methods that were implementedwithin the SENSE project to infer causal relations from time series. The dataset that we usedwas about a smart grid use case and simulated using Siemens Bifrost simulation engine. Thedataset contained data about a month with a range of time series representing different prop-erties of a smart grid system. Some of the variables that were included in the dataset were:
TRAFO SECONDARY VOLTAGE@TRAFO BUILDING, VOLTAGE ANGLE3P@GRID NODE, following thenaming format VARIABLE@SYSTEM COMPONENT. The methods were applied on the time se-ries selected based on expert knowledge and tested to quantify the causality relations amongthem.The aim was to infer causal relations between different properties in a cyber-physical systeme.g. smart grid. Such systems are very complex in nature with a large number of interactionsbetween its properties. A challenge would be to design a custom ML model (e.g. neural net-work) that captures key aspects of the underlying system processes and that can generalizeto different situations that could occur within a smart grid. In addition, the process for de-signing and validating an ML model requires sufficient domain knowledge and understandingof the mechanisms within a smart grid system to correctly specify the underlying model. Notbeing able to map the underlying relations within the system would also impact the possibilityto check the validity of our methods [15]. An ML approach would also be time consuming todesign since it would require mapping of the time series of the different properties of a sys-tem to different events. This type of work would need sufficient labeled data for training andvalidation and involvement of domain experts.An alternative that we have undertaken in the project was to employ model-free approaches,which typically rely on statistical learning [25]. By doing this, our models would not need tofocus on specific dynamics of a target system (in our case a smart grid system) but instead ex-amine the characteristics (“Information flow”) among the time series of the system and crossmap them. In view of this, we rationalized for the use of the following model-free approaches,including Granger causality and TE, that have been commonly used in literature to infer causalrelations in time series data in different fields of studies. As a complement to the statisticalmethods, the pre-trained TDNN tool [24] was implemented and tested.Below follows an overview of the methods that were implemented.
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Figure 4: An example with two time series X (red-colored) and Y (blue-colored)

3.3.1 Method 1: Granger causality
Granger causality is based on prediction. If a signal X is causal for another Y, then past values ofX should contain information that helps to predict Y better than merely using the informationcontained in past values of Y. Alternative definition: “If discarding X reduces the power to pre-dict Y then X contains unique information about Y and thus can be concluded that X Granger-causes Y”. The presence of this relation between X and Y can be referred as “X Granger causesY”. Mathematically, this relationship can be formalized by a vector autoregressive (VAR) modelwhere future value of Y is modeled as a linear combination of historical values of X and Y (figure4). Each VAR coefficient is then tested for its significance whether it is helpful for predicting Y viat-tests followed by testing the final model via an F-test. If any coefficient is significant then wecan conclude “X Granger causes Y”. The concept of including an additional variable for betterprediction of another variable is related to the linear regression model where an independentvariable is declared significant if the full model predicts the dependent variable better thanthe model without this variable. The underlying assumption is that the time series should notbe stationary and that their properties should not depend on the time they are observed. Forinstance, time series with trends or seasonality are not stationary since the former will affectthe values in the time series at different times.A Granger Causality test would return an output where

• 0 – indicates that the null hypothesis of noncausality should not be rejected. In otherwords, there is not enough evidence to suggest that the time series X Granger-causes thetime series Y.
• 1 – indicates rejection of the null hypothesis of noncausality, which means that there isenough evidence to suggest that the time series X Granger-causes the time series Y.

3.3.2 Method 2: Transfer Entropy (TE)
TE is a measure used to quantify the directed information flow between two time series [26,27]. TE provides means for quantifying how much information from the past of one time seriescan be used to predict the future of another time series. In other words, TE describes theuncertainty of an information in time series to quantify the directed information flow fromone time series to another.
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In contrast to Granger causality method which is regression-based, TE is an information-theoretic method and can capture both linear and non-linear dependencies between time se-ries, making it suitable for analysis of causality in complex systems. The larger the value ofTE, the more information is transferred from one time series to another, suggesting a strongerinfluence of a time series on another one. A value of 0 indicates no influence or informationtransfer between the time series.
3.3.3 Method 3: Pre-trained TDNN
Disadvantages when using Granger causality and TE:

• Can give contradictory results and can perform better in certain specific application thanothers
• Not appropriate for problems with many time series. Granger causality and TE cannotrepresent the nonlinearity when using multiple time series at the same time.
We have used the toolbox implemented by Rossi et al. [24] and has the following functions:
1. Causality Detection: performs a statistical test to evaluate if the variance of a time seriesis statistically different from the variance of another time series. If a p-value is smallerthan a threshold (e.g. 0.05), a time series influences another time series.
2. Time Horizon Detection: measures the time horizons of the influence, that is the timedifference between the influencing event of X and the influenced event in Y.
Next, we will provide technical details about implementation of the three methods. Meth-ods 1 and 3 run on Matlab and method 2 runs on Python environments. Each method requiresthe data in specific formats. For instance, methods 1 and 3 require the data to be formatted asa Matlab catalogue with “.mat” extension. The method 2 requires the data to saved in a CSVformat. To run methods 1 and 3 the Matlab toolboxes likl Econometrics, Deep Learning Tool-box, Statistics and Machine Learning Toolbox, should be installed on the computer running thecode. The method 2 requires the computer to have Jupyter environment to be set up alongwith libraries such as Panda and PyIF to be installed.

3.4 Evaluation of the methods
In this section we will provide details on the experiments that were performed (Table 3).For all the experiments simulated data provided by our industrial partner Siemens were used.The following results were derived for experiment 1. When hypothesis 1 was tested wefound out that the methods 1 and 2 could detect causality. Nevertheless, for other hypothe-ses the results were mixed showing contradicting causality relations and/or two-way causalityrelations (that is the time series cause each other in both ways).For experiment #2, which focused on specific events that were pre-identified through ob-servations in a visualization tool and during the time starting from the event and an hour later,the results are displayed in Table 4.The causality results from the methods are different to each other. In other words, whenone method detects causality, the other methods do not detect any causality. The results arenot either consistent within the methods.After segmenting the time series 2 hours before the event and an hour after the eventaccording to experiment #3 the results showed no changes. Lastly, as per experiment #4 the
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Experiment# Goal Description of tests and hypotheses1 To test causalitydetection algo-rithms using timeseries measuredduring the wholetime.

Set of cases were derived from a project member whohas expert knowledge in smart grids.Data segments: full period of the measurements that isone month.Hypotheses:• PV Power Production causes Batter State of Charge
• Car Charging Demand causes Grid Demand
• Car Charging Demand from Fast Charger causes Bat-tery State of Charge (Reduction)
• Grid Demand causes Battery Demand (or the otherway around)

2 To test causalitydetection algo-rithms focusingon specific eventshappening in thesmart grid system

Eight events in the dataset were identified using a visu-alization tool developed as part of another task in theproject. The tool visualized the different time series andthe time when a violation in the system occurred.A set of cases were derived by a colleague.Data segments: To improve the power of the methods todetect causality we decided to focus on a time segmentrelated to the events. We decided to consider data foranalysis from the start of the event till an hour after theevent.Hypotheses:
• Grid Demand causes Total Charging
• Total Charging causes Battery Charge/Discharge

3 Test the methodswith different timeintervals.
The assumption was that when an event happens thecharacteristics and links between different time seriesare changed and reflected before the actual event. Forthis reason, we decided to focus on the same scenariosas in experiment #2 but include 2 hours of data beforethe event.Same scenarios and hypotheses were tested as in exper-iment #2.4 Test refinedversions of themethods.
The methods were refined by preprocessing time seriesbefore using them as inputs to methods. The assump-tion was the time series had non-linearity features. Toeliminate nonlinear trends from the time series a low (6)-order polynomial filter was fitted to them.Same scenarios and hypotheses were tested as in exper-iment #2.

Table 3: Experiments and hypotheses tested.
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Grid demand
causes Total
charging

Total charg-
ing causes
Grid demand

Both cause
each other

No causality Not relevant

GC 2 2 3 1
TE 2 3 0 2
TDNN 3 2 1 1

Table 4: Results for the 8 system events for each method and combination of causality.

time series were initially pre-processed using a filter to remove the non-linearity features inthem and then used as inputs the three methods. Similarly, no changes in the results wereobserved.
3.5 Conclusions and Future work
The findings from the conducted experiments yield both insightful and complex results.In experiment 1, the detection of causality through hypothesis 1 demonstrated promis-ing results, especially, for methods 1 and 2. However, the presence of mixed and contra-dictory causality relations for other hypotheses, including two-way causality, highlights thecomplex nature of the relationships within the time series. Experiment 2 focused on specificpre-identified events. Again, significant divergence in causality results among the employedmethods was observed. There was a lack of consistency within methods and cases where onemethod detected causality while others did not establish reliable causality links. Contrary toexpectations, experiments 3 and 4, which involved time series segmentation around eventsand pre-processing time series by removing non-linearity features, did not yield observablechanges in the results. These results suggest that temporal proximity to events might not sig-nificantly impact the causality relations, at least within the investigated time series frame.As future work, one might consider the following steps. A more nuanced examination ofcausality during specific events could provide valuable insights. For instance, discussing thecases with domain experts may help in ensuring the existence and magnitude of causality re-lations between time series during a specific time frame. Additionally, testing data from diversereal-world data sources (e.g. smart buildings in cooperation with the industrial project part-ner AEE INTEC) could offer a comprehensive understanding of the relationships between timeseries, which in turn could shed light into validity and reliability of the methods. Finally, therewould be a need to conduct extensive validation and robustness testing of the causality detec-tion methods against known ground truth scenarios to provide confidence in their applicabilityand reliability.
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4 Explanation Generation and Ranking
Explainability of a system is the ability to explain its behavior to the user. In a world, where in-creasingly complex systems are helping users in their everyday lives, explainability is becominga crucial feature to be implemented in any system. A system, which can explain its decisionsand reason about the root cause of a situation increases user trust, reduces maintenance timeand costs and even helps users to make the right decisions when interacting with the system.By definition, an explanation seeks to make a situation, object or event more understand-able. However, creating understandable explanations is a tricky task. There is no one-fits-allsolution on building an explanation that makes sure the explanation seeker improves their un-derstanding of a certain situation. To achieve understandable explanations, multiple factorshave to be considered, such as the knowledge of the explanation seeker, the context they arein as well as the actual reason for a situation to occur. In a Cyber-Physical System (CPS), anexplanation of a situation or decision of the system can be created by analysing the systemdata. However, such a trace-based explanation is only one possible type of explanation thatcould satisfy user needs.We are proposing an integrated explanation engine for Cyber-Physical, which can deriveuser-centered explanations from system topology data, time series sensor inputs and causalityknowledge from domain experts. For a good representation of causality, we propose a multi-faceted causality input. This more intricate representation allows us to create more accurateand precise explanations, catering explanations to user’s needs and context.In this chapter, we are presenting the current version of the explanation engine in the SENSEproject. In figure 5, the envisioned workflow from input data to explanations is shown. Thefirst part, getting from raw time series data to Events, is part of Workpackage 3, in Task 3.3and wil not be elaborated further here. The focus of this task (explanation generation andranking is the center of the figure, where Events are converted to Causal Paths with the helpof additional input, such as topology information of the system as well as Event type causalityknowledge. The output of this task would be a list of causal paths, which constructs the ba-sis for user-centered and actionable explanations (to be tackled in T 4.4). In this first version,we have focused on the SeeHub PoC. It contains a public garage, which offers 8 EV chargingstations. The garage further contains a battery as well as a PV System, which help to balancethe power needs of the electric vehicles charging at the facility. The local grid operator has im-posed an operating envelope on the facility operator of the garage, determining the minimumand maximum capacity the garage is allowed to demand or feed into the local grid. This is nec-essary to prevent the local power transformer from overloading. If the envelope is violated,an explanations is required for the facility operator of the garage. This is the explanations weare aiming for.In section 4.1, we will discuss the literature on events and causality that forms the basis ofour approach. In section 4.2, we will focus on the methodology of the approach to get fromEvents to Causal Paths and will then show first results of applying this approach to the SeeHubPoC. Finally, we will discuss our findings and future improvements of the work in section 4.3.
4.1 Related Work
Explanations and Explainability has been discussed and researched in many domains. In thecontext of the SENSE project, we will focus on explainability in Cyber-Physical Systems as wellas explainability in AI. While explainable AI is not the focus of the project, there are manyparallels between the two domains, especially since some form of AI, either in the form of
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Figure 5: Workflow from input data to Explanations

decision support or data analysis processes, is implemented in almost every CPS. Therefore,we will analyse the research of explainability in both domains before we conclude with ananalysis of the most important aspects to consider from either of them.As AI becomes a regular part of our daily lives, the fact that most AI models are ”black-boxes” in terms of how they come to their decisions has resulted in increased research onexplainable AI. Making AI models explainable can help in increasing user trust as well as estab-lish accountability in model decisions. However, current Machine Learning models mostly relyon statistical inference, which is very different from human-level reasoning. While statisticsis based on probability values based on pre-seen data, human reasoning is based on causalmodels, where we use our knowledge of cause and effect relations between events to explaina situation or decision. For a user to comprehend the decisions of a model, it is important toenhance statistical inference with causal knowledge. These causal cognitive models have onlyrecently been ”algorithmitized” to enable mathematical exploration of causal relations [28].On another note, research on explainability has shifted from mechanistic explanations touser-centric explanations, which are context-aware and consider the comprehensibility of anexplanation [29]. While mechanistic explanations provide provenance information and justifi-cations that are objectively valid, they might be insufficient to meet the user’s needs, especiallyin the face of increasingly complex systems that need explaining. User-centered explanationsare thus an extension of the provenance-enabled explanations as they incorporate domain-knowledge and user’s context to generate comprehensible explanations of the functioning ofa system.Depending on the user, the type of explanation that is suitable for them might differ. In [30],an overview explanation types including their definitions and sufficiency conditions for eachexplanation type is presented. The authors argue that explanations for users need to includemultiple types of explanations as each type serves a different purpose.
4.2 Methodology and initial Results
We have established a workflow, where causal relations between events in the system can bederived based on their position in the system, temporal occurrence as well as their event types.Descriptions of data types, classes and properties of the Semantic Data Model are describedin detail in section 2.As Input Data for the Semantic Explanation Engine, the following Data Sources are required:
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Figure 6: SeeHub topology

• Topology Data topology data contains static data about the topology of the system. Itdescribes the platforms, sensors and connections between them, what type of propertiesthe Sensors measure.
• State Types and State Type Causality These Datasets contain a list of potential States,which are of interested within the system. A State is an occurence of interest, whichhappens over a period of time. Each StateType has a type of Sensor it can be associatedwith. It is possible that a StateType can be associated with multiple types of sensors.
• Event Detection Data Stream At runtime, a continuous data streams of detected eventsprovides the basis for the creation of states and further to detect causal paths for expla-nations.
We have used data from the SeeHub use case for creating and testing a first version of theExplanation Generation Framework. In figure 6, the topology of the SeeHub use case is shown.In this use case, there is an operating envelope imposed on the facility operator, which definesa range of maximum electricity power demand or feed-in of the facility to the grid. Violationsof the envelope range need to be detected and explained. A more detailed description ofthe use case can be found in Deliverable 2.1, where the SENSE use cases are defined in detail.Components of the system (i.e. PV System, Chargers, Batteries) can have Sensors attached tothem, which measure some observable property (shown as red circles). Any component withinthe outline of another component is considered a sub-component of the bigger system. Thissetup constructs the topology input for the engine.
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StateType Definition associated SystemTypeEnvelope Viola-tion The active power consumed/producedwithin the platform is exceeding the enve-lope limits imposed by the operatin envelopeof the platform

EnvelopeViolationGarage Sensor

High Charging active power consumed by the EVcharger isexceeding the operating envelope of the plat-form above.
AP EVCharger Sensor

Low Battery SOC state of charge of the battery is within thelowest 5% ever recorded SOC Battery Sensor
Battery Dip active power provided by the battery hasdropped for a time instance AP Battery Sensor
Battery DischargeLoading active power provided by the battery is in-creasing, but has not reached its high pointyet

AP Battery Sensor

High Charging Dif-ference active power consumed by the EVcharger isincreasing very fast AP EVCharger Sensor
Battery Unused battery is neither consuming any activepower nor providing active power to the sys-tem

AP Battery Sensor

Table 6: SeeHub State Types

State Types and State Type Causality was defined based on the Use Case requirements andexample explanations. In table 6, the list of state types that are of interest in the SeeHub systemare listed. Each state type has a definition as well as a type of sensor it can be associated with.In addition to the state types in the system, we need to define the relations between them.The causal relation between types of states are defined in the state type causality table. Itcontains the information about how events are connected to each other in as many facets aspossible. In the CaTeRS scheme [10], a temporal and causal relation scheme was introduced,considering not only a simple ”caused by” relation, but dividing the relation further into thetemporal aspect as well as the causal aspect of the relation. We are using the terms for tem-poral and causal relations as defined in [10]. For temporal relations, there are four options(explained in the form eventA→ eventB):
• before eventA starts and ends before eventB
• overlaps eventA starts before eventB, but ends after eventB has started
• contains eventA starts before eventB and ends after eventB has ended
• identity eventA starts and ends at the same time as eventB
Furthermore, there are three options for causal relations [10]:
• cause If eventA occurs, eventB most probably occurs as a result.
• enable If eventA does not occur, eventB most probably does not occur (not enabled tooccur).
• prevent If eventA occurs, eventB most probably does not occur as a result.
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Cause causal temporal topological EffectHigh Charging Difference enables overlaps siblingPlatform Battery Discharge LoadingBattery Discharge Loading causes overlaps parentPlatform Envelope ViolationHigh Charging causes before siblingPlatform Low Battery SOCLow Battery SOC causes before parentPlatform Envelope ViolationBattery Dip causes overlaps parentPlatform Envelope ViolationHigh Charging causes overlaps parentPlatform Envelope ViolationHigh Charging enables overlaps samePlatform High Charging Difference
Table 7: State Type Causality input

Additionally, we have added a third category to the type causality definition: topological.This relation indicates the topological relation between two events in the system. These typesare defined:
• samePlatform eventA and eventB are associated with a sensor on the same platform
• parentPlatform eventA is associated with a sensor on a platform that is hosted by theplatform, where eventB is detected
• siblingPlatform eventA is associated with a sensor on a platform that is hosted by thesame platform as the platform associated with eventB is.
In table 7, the state type causality for the SeeHub use case is shown. This table is derivedbased on domain expert knowledge for now. Future work could focus on different options toderive this information in a more automated way.Based on the input data on topology, state types and state type causality, the explanationgeneration algorithm can derive a set of causal paths for any state that requires an explanation.In a first step, actual causality is derived from type causality through reasoning. The algorithmto create actual causality relations is desrcibed in algorithm 1. In the next step, a causal pathneeds to be found in the system through exploratory search for actual causality relations. Thefunction to find a full causal path is described in algorithm 2. It is a recursive function, queryingthe causal path for actual causal relations between events up to the point, when no morecauses are detected in the system. The result is a tree of causal paths, where all branches leadto a potential root cause. The final root cause in the system is not necessarily the actual rootcause, but it is the last step of the cause, where reliable data is available. Any further causeswould be events happening outside of our defined system and thus we do not have data aboutthem.

4.3 Conclusion and Future Improvements
We have presented the SENSE explanation engine in its current version. We have establishedits usefulness in the SeeHub use case, which is a small real-life e-charging facility in Aspern.Future work will focus on implementing the engine for other use cases in the smart grid andsmart building domain. Additionally, the refinement of the explanations and the evaluation oftheir correctness will be tackled in the next months within the project. We have written upand refined this approach in a paper accepted at the 2024 Energy Informatics DACH+ Confer-ence [2].
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Algorithm 1 derivation of state causality from state type causality
1: for each typeCausality in StateTypeCausality do
2: for each state in the data stream that has eventType = typeCausality.Effect do
3: effectSensor ← sensor associated with state
4: effectP latform← platform hosting effectSensor
5: effectT imeInterval← time between start and end of state
6: causeP latforms← list of platforms which have typeCausality.topologicalrelation to effectP latform7: causeSensors← list of sensors hosted by causeP latforms
8: causeT imeInterval← limits for start and end of a potential causeStateaccording to typeCausality.temporal9: for each state in the data stream fulfilling causeT imeInterval associated with

causeSensors do
10: add Causality relation (causeState,typeCausality.causal,effectState)
11: end for
12: Check for cause event types in the potential systems
13: Return for now
14: end for
15: end for

Algorithm 2 causal path identification
1: function findCause(effectState)
2: query causeStates in the relation (causeState, causalrelation, effectState)
3: for each state in causeStates do
4: save state as a cause of effectState
5: findCause(state)
6: end for
7: end function

Figure 7: example of a causal path detected by the explanation engine
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5 Personalised and Actionable Explanation
Explanations in the SENSE-architecture aim to be catered to a user’s needs. Additionally, wewill also focus on the access rights and context of a user who is requesting an explanation of thesystem. All the information surrounding the user will be represented in the semantic model. Ina recently submitted paper to the Neurosymbolic AI journal about the importance of ontologiesin explainable AI, Confalonieri and Guizzardi [31] explain the importance of considering a user’scontext to create good explanations.User-centered explanations are becoming a increasingly important in the era of explainableAI. The importance of a user-centered design of explanations has already been mentioned in2007 by [32]. Explanations are a broadly used term, but explanations can have different aims,such as transparency, scrutability, increase of trust, effectiveness, persuasiveness, efficiencyor satisfaction. In a user studies on movie recommendations and explanations of the recom-mendations, they have found that explanation features need to be tailored to the user and thecontext.In another paper, which has been accepted to PerCom 2024 [33], a user-centered explana-tion engine has been proposed in the smart home domain. They have developed a system,where the user profile as well as the user state and role of the user is considered at the timeof occurence of an event. All of these layers are important aspects which will be considered inthe personalised and actionable explanations of the SENSE system.On another note, the definition of a good explanation remains an open topic until today.Since explanations are generated with different goals in mind (as mentioned above), their eval-uation is tends to be application-specific as well. In [34], an explainability factsheet is proposedto evaluate an explanation in a structured way. The evaluation is to be done in five dimensions:

• functional - type of problem to be addressed
• operational - type of interaction with the end user
• usability - how comprehensible an explanation is to the end-user
• safety - robustness and security of an approach, echting if there is information leaks andconsistent information
• validation - process to evaluate and prove the effectiveness of the explanation

While an explanation should aim to perform well in all dimensions, there is usually a trade-offhappening between some of the dimensions. Which dimension is more important is finally anapplication-specific decision to be made.In a first step to tackle this research problem, we have already integrated user context intothe SENSE Ontology, as described in section 2.2.4.
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